mos晶体管

时间:2024-09-01 08:36:16编辑:奇事君

mosfet是什么意思?

金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)。是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”(工作载流子)的极性不同,可分为“N型”与“P型” 的两种类型,通常又称为NMOSFET与PMOSFET,其他简称上包括NMOS、PMOS等。工作原理要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。若先不接VGS(即VGS=0),在D与S极之间加一正电压VDS,漏极D与衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G与源极S之间加一电压VGS。此时可以将栅极与衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极性相反,所以称为“反型层”,这反型层有可能将漏与源的两N型区连接起来形成导电沟道。当VGS电压太低时,感应出来的负电荷较少,它将被P型衬底中的空穴中和,因此在这种情况时,漏源之间仍然无电流ID。当VGS增加到一定值时,其感应的负电荷把两个分离的N区沟通形成N沟道,这个临界电压称为开启电压(或称阈值电压、门限电压),用符号VT表示(一般规定在ID=10uA时的VGS作为VT)。当VGS继续增大,负电荷增加,导电沟道扩大,电阻降低,ID也随之增加,并且呈较好线性关系,如图3所示。此曲线称为转换特性。因此在一定范围内可以认为,改变VGS来控制漏源之间的电阻,达到控制ID的作用。由于这种结构在VGS=0时,ID=0,称这种MOSFET为增强型。另一类MOSFET,在VGS=0时也有一定的ID(称为IDSS),这种MOSFET称为耗尽型。它的转移特性如图5所示。VP为夹断电压(ID=0)。耗尽型与增强型主要区别是在制造SiO2绝缘层中有大量的正离子,使在P型衬底的界面上感应出较多的负电荷,即在两个N型区中间的P型硅内形成一N型硅薄层而形成一导电沟道,所以在VGS=0时,有VDS作用时也有一定的ID(IDSS);当VGS有电压时(可以是正电压或负电压),改变感应的负电荷数量,从而改变ID的大小。VP为ID=0时的-VGS,称为夹断电压。在电子电路上的应用1、数字电路数字科技的进步,如微处理器运算性能不断提升,带给深入研发新一代金氧半场效晶体管更多的动力,这也使得金氧半场效晶体管本身的工作速度越来越快,几乎成为各种半导体有源组件中最快的一种。金氧半场效晶体管在数字信号处理上最主要的成功来自互补式金属氧化物半导体逻辑电路的发明,这种结构最大的好处是理论上不会有静态的功率损耗,只有在逻辑门的切换动作时才有电流通过。互补式金属氧化物半导体逻辑门最基本的成员是互补式金属氧化物半导体反相器,而所有互补式金属氧化物半导体逻辑门的基本工作都如同反相器一样;同一时间内必定只有一种晶体管(NMOS或是PMOS)处在导通的状态下,另一种必定是截止状态,这使得从电源端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了集成电路的发热量。金氧半场效晶体管在数字电路上应用的另外一大优势是对直流信号而言,金氧半场效晶体管的栅极端阻抗为无限大(等效于开路),也就是理论上不会有电流从金氧半场效晶体管的栅极端流向电路里的接地点,而是完全由电压控制栅极的形式。这让金氧半场效晶体管和他们最主要的竞争对手BJT相较之下更为省电,而且也更易于驱动。2、模拟电路有一段时间,金氧半场效晶体管并非模拟电路设计工程师的首选,因为模拟电路设计重视的性能参数,如晶体管的跨导或是电流的驱动力上,金氧半场效晶体管不如BJT来得适合模拟电路的需求。但是随着金氧半场效晶体管技术的不断演进,今日的CMOS技术也已经可以符合很多模拟电路的规格需求。以上内容参考 百度百科-MOSFET

mosfet是什么电子元件

mosfet是金属氧化物半导体场效应晶体管。MOSFET,全称是Metal Oxide Semiconductor Field Effect Transistor,还可以称作MOS、MOS管,中文是金属氧化物半导体场效应晶体管,是一种通过场效应控制电流的半导体器件,用金属层(M)的栅极隔着氧化层(O)利用电场的效应去控制半导体(S)的场效应晶体管,是最基础的电子器件。特点是导通电阻小,损耗低,驱动电路简单,热阻特性好,非常适用于电脑、手机、移动电源、车载导航、电动交通工具、UPS电源等电源控制领域。根据工作电压的不同,功率MOSFET可分为工作电压小于100V中低压MOSFET和大于500V的高压MOSFET,其中中低压MOSFET多用于手机、数码相机和电动自行车等产品,而高压领域则包括风力发电、电焊机、高压变频器和发电设备等。沟槽型功率MOSFET(Trench MOSFET):电压范围12V到250V,适用领域MID、移动电源、手机数据线、LED电源、HID灯、金牌PC电源、TV电源板、电脑显卡、UPS电源等,优势是易于驱动,工作频率高,热稳定性好,损耗低,但耐压低,由于要开沟槽,工艺复杂,单元的一致性,跨导的特性和雪崩能量比相对较差。

mos管的作用

mos管的作用:可应用于放大电路。由于MOS管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。可以用作可变电阻。可以方便地用作恒流源。可以用作电子开关。MOS管为压控元件,只要加到它的压控元件所需电压就能使它导通,它的导通就像三极管在饱和状态一样,导通结的压降最小,常说的精典是开关作用。去掉这个控制电压经就截止。MOS管即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。因此,MOS管有时被称为场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。MOS管的特性开关特性。MOS管是压控器件,作为开关时,NMOS只要满足Vgs>Vgs(th)即可导通,PMOS只要满足Vgs。开关损耗。MOS的损耗主要包括开关损耗和导通损耗,导通损耗是由于导通后存在导通电阻而产生的,导通电阻都很小。开关损耗是在MOS由可变电阻区进入夹断区的过程中,MOS处于恒流区时所产生的损耗。开关损耗远大于导通损耗。减小损耗通常有两个方法,一是缩短开关时间,二是降低开关频率。由压控所导致的的开关特性。由于制作工艺的限制,NMOS的使用场景要远比PMOS广泛,因此在将更适合于高端驱动的PMOS替换成NMOS时便出现了问题。在宽电压的应用场景中,栅极的控制电压很多时候是不确定的,为了保证MOS管的安全工作,很多MOS管内置了稳压管来限制栅极的控制电压。

mos管的作用

mos管的作用如下:1、MOS工作在导通区或者截止区的时候可以当开关使用。外加PWM信号可以用于调压,电机调速等方面。2、几个MOS管搭配可以起到单向导通的作用(类似二极管单向导通),比二极管有优势的地方是压降小、功耗低,导通电流大。低电压大电流的情况下优势更明显;3、工作在可变电阻区的时候可以当一个电阻使用,一般集成芯片中的电阻就是使用这种方式的电阻,优势是生产方便,体积小巧。4、工作在可变电阻区还可以起到放大的作用,与三极管放大电路类似。


上一篇:我爱你留言板

下一篇:林春平