编码器的增量型和绝对值型主要是什么区别啊?能相互替换吗?
不能相互替代,两者区别如下:一、指代不同1、增量型编码器:是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。2、绝对值型编码器:每一个位置对应一个确定的数字码,因此的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。二、特点不同1、增量型编码器:转轴旋转时,有相应的脉冲输出,其旋转方向的判别和脉冲数量的增减借助后部的判向电路和计数器来实现。其计数起点任意设定,可实现多圈无限累加和测量。2、绝对值型编码器:由机械位置确定编码,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取位置。三、原理不同1、增量型编码器:当码盘随工作轴一起转动时,每转过一个缝隙就产生一次光线的明暗变化,再经整形放大,可以得到一定幅值和功率的电脉冲输出信号,脉冲数就等于转过的缝隙数。将该脉冲信号送到计数器中去进行计数,从测得的数码数就能知道码盘转过的角度。2、绝对值型编码器:有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码。参考资料来源:百度百科-绝对值编码器参考资料来源:百度百科-增量式编码器
绝对式编码器的问题
绝对型编码器的每一个位置是唯一的(即绝对的),与增量型编码器不同。 增量型编码器的位置是由原位基准的计数脉冲累计来决定位置,读数状态要始终连续,不可间断,抗干扰能力差,主要用于短时的相对位移或速度测量; 绝对型编码器是以即时读出数据码系统,以建立信息,没有两个位置是相同的。
绝对型编码器读出的信号可以是自然二进制或格雷码等数字信号,其格雷码错码几率较小,对于后部二次仪表的运算,因是数字量计算,不易增加其误差,因此,其传输及计算的数据的可靠性高。
绝对值编码器原理
增量型编码器:是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。增量编码器是一圈(列)的磁极对,绝对是2圈(2列或3列)的磁极对,通过游标卡尺的Nonius原理实现单圈位置的绝对测量。倍加福绝对值编码器是一种用于测量旋转物体角度的设备,它将旋转角度转换成相应的电信号输出。通常情况下,正负值表示旋转方向和角度大小,因此不能任意修改。编码器的绝对值符合PROFIBUS协议,OrderNO.062,操作基于Class1和Class2对于基于Class1的编码器,位置值和诊断数据,Byte1...16可用。
请教关于绝对值编码器的使用
绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。单圈绝对值编码器到多圈绝对值编码器旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝
对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称之为单圈绝对值编码器。
如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。
多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以
了,而大大简化了安装调试难度。 上海楚嘉自动化科技有限公司 www.shchujia.com
绝对什编码器中精 度:±1/2LSB(12位), ±2LSB(16位) ,请问绝对值编码器16位的精度怎么算,LSB是什么意思
1>你首先要 知道绝对值编码器分辨率12位为2的12次方=4096,16位为2的16次方=65536。
2>在单圈旋转编码器中12位分辨率绝对值编码器的最低分辨为360度/4096=0.087890625。
这里12位编码器精度为:±1/2LSB ,LSB指"最小分辨率",这里最小分辨率为
0.087890625。那么12位编码器精度即为0.087890625*1/2=0.0439453125;
同理,16位绝对值编码器的精度怎么算?
答:360度/2的16次方 乘2 ?(自己算)
勇泰科技
绝对型编码器与增量型编码器有什么区别?
一、性质不同1、增量型编码器:位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。2、绝对型编码器:因其每一个位置绝对唯一、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。二、原理不同1、增量型编码器:在一个码盘的边缘上开有相等角度的缝隙(分为透明和不透明部分),在编码器两侧安装光源和感光元件。当码盘随工作轴旋转时,每旋转一个槽,光影都会发生变化。经过整形放大后,可以得到一定幅度和功率的电脉冲输出信号,脉冲数等于旋转的槽数。脉冲信号被发送到计数器进行计数,从测量的数字可以知道圆盘旋转的角度。2、绝对型编码器:绝对型编码器因其高精度,输出位数较多,如果仍采用并行输出,每个输出信号必须保证良好的连接,对于更复杂的条件隔离,电缆芯线多,这带来很多不便,降低了可靠性。因此,绝对型编码器在多个数字。输出类型,一般选择串行输出或总线型输出,德国绝对编码器串行输出是最常用的SSI(同步串行输出)。扩展资料:增量型编码器转轴转动时,有相应的脉冲输出。利用后向判断电路和计数器实现旋转方向的判别和脉冲个数的增减。计数起点可以任意设定,实现多个周期的无限积累和测量。它还可以利用每个发射脉冲的z信号作为参考机械零位。脉冲数由编码器光栅的行数决定。为了提高分辨率,可以利用相位差为90度的 A、B信号与原脉冲数相乘或替代高分辨率编码器。参考资料来源:百度百科-增量式编码器参考资料来源:百度百科-绝对式编码器
绝对值编码器原理
增量编码器是一圈(列)的磁极对,绝对是2圈(2列或3列)的磁极对,通过游标卡尺的Nonius原理实现单圈位置的绝对测量。绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。绝对值型编码器:由机械位置确定编码,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取位置。其中,输出的原始脉冲数是没有方向性的,需要通过编码器芯片中的电子电路进行方向判断和计数,最终输出正负值用于表示旋转方向和角度大小。编码器的绝对值符合PROFIBUS协议,OrderNO.062,操作基于Class1和Class2对于基于Class1的编码器,位置值和诊断数据,Byte1...16可用。如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。编码器厂家就找上海开地电子编码器选型。
绝对值编码器和增量编码器的区别
1、工作方式不同:增量型编码器断电后需要回原点,它无法输出轴转动的绝对位置信息,存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位。绝对编码器不需要回原点,它由机械位置确定编码,无需记忆,需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。2、工作原理不同:绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器,这样的编码器是由光电码盘进行记忆的。绝对编码器在一个特定的旋转周期范围内不会出现重复的信号输出,每个角度的位置编码都是独一无二的。绝对编码器有单圈与多圈之分,而单圈与多圈绝对值编码器的区别,仅仅是在角度位置编码输出量程上的不同而已,前者的量程只有一圈,而后者可以做到多圈旋转位置测量。增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相。由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得两组正弦波信号组合成A、B,每个正弦波相差90度相位差(相对于一个周波为360度),另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。3、使用场合不同:增量型编码器比较通用,适用于大部分场合。绝对型编码器有量程范围,适合用在一些特殊机床上。参考资料来源:百度百科-绝对值编码器百度百科-增量编码器
麻烦请教一下您用CP1H读取E6CP-AG5C 绝对值编码器角度是怎么做的。
有二种办法可以实现,
1、用gry()指令,优点简单、缺点需要占用全部的输入通道,如0通道,或者1通道;
2、自己写解码程序,优点,仅仅占用通道的8个位,缺点稍微麻烦一点,下面是我用的程序,其中bmq0-bmq7 分别为编码器的0-7输出端,可以接在0通道或者1通道的0-7位上,3通道为转换后的输出通道,其输出为0-255,需要的话再用四则运算换算为360度制的数据
LD bmq7
OUT 3.07
LD 3.07
ANDNOT bmq6
LD bmq6
ANDNOT 3.07
ORLD
OUT 3.06
LD 3.06
ANDNOT bmq5
LD bmq5
ANDNOT 3.06
ORLD
OUT 3.05
LD 3.05
ANDNOT bmq4
LD bmq4
ANDNOT 3.05
ORLD
OUT 3.04
LD 3.04
ANDNOT bmq3
LD bmq3
ANDNOT 3.04
ORLD
OUT 3.03
LD 3.03
ANDNOT bmq2
LD bmq2
ANDNOT 3.03
ORLD
OUT 3.02
LD 3.02
ANDNOT bmq1
LD bmq1
ANDNOT 3.02
ORLD
OUT 3.01
LD 3.01
ANDNOT bmq0
LD bmq0
ANDNOT 3.01
ORLD
OUT 3.00
LD P_On
MOV(021) 3 绝对角度
LD<(310) 绝对角度 零位角
-(410) 零位角 绝对角度 D5
-(410) &256 D5 主轴相对角度
' 主轴相对角度值(0-255)计算1
LD=(300) 绝对角度 零位角
MOV(021) #0 主轴相对角度
' 主轴相对角度值(0-255)计算2
LD>(320) 绝对角度 零位角
-(410) 绝对角度 零位角 主轴相对角度