lm399

时间:2024-06-22 14:05:09编辑:奇事君

苏泊尔电磁炉型号代表什么?

苏泊尔电磁炉型号代表有一定含义简单介绍如下
比如SDHJ078-200电磁炉第一个字母S代表苏泊尔,第二个字母D代表电器(电磁炉),第三个字母H(黑色)代表磁板类型,第四个字母J代表控制方式(按键型),数字078代表序列号,数字200代表功率(实际功率是200的十倍)。
磁板类型有多种H代表国产黑晶板,B代表国产白晶板,M代表国产透明板,O代表欧凯磁板,N代表NEG磁板,X代表肖特磁板。
控制方式类型有多种:C代表触摸控制,J代表按键型控制,X代表线控型控制。
有些电磁炉产品型号也显示外观和产品销售渠道如SDHCB06K-210第五个字母B代表薄,第六个字母K代表销售方式大卖场渠道。


电磁炉LM399什么样的

  LM399是高精度电压基准源,电磁炉用的应该是四电压比较器LM339。  集成电路LM339内部装有四个独立的电压比较器,很常见的集成电路。利用LM339可以方便的组成各种电压比较器电路和振荡器电路。  用在电磁炉中,主要是作为锅具检测、温度检测、电压、电流检测。将检测到的信号返给主芯片,使其指挥正常工作、调整功率等。

基准器件lm399怎么实现替代5V基准

LM358是运放,LM399是精密电压基准源。完全不同的器件,不能互换。LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。


LM317有多少种封装类型,管脚顺序是否相同?

有四种封装,管脚次序相同,1角是Vin,2角是Grad,3角是Vout。基准电压是1.25V。LM317是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。lm317是可调节3端正电压稳压器,在输出电压范围1.2伏到37伏时能够提供超过1.5安的电流,此稳压器非常易于使用。可调整输出电压低到1.2V。保证1.5A 输出电流。典型线性调整率0.01%。典型负载调整率0.1%。80dB纹波抑制比。输出短路保护。过流、过热保护。调整管安全工作区保护。标准三端晶体管封装。电压范围LM117/LM317 1.25V 至 37V 连续可调LM317 和 Fairchild Semiconductor 信息:Manufactured by Fairchild Semiconductor, LM317 is a 线性调节器。

常用的电压基准芯片有哪些?

常用电压基准芯片:



LM236D-2-5:2.5V基准电压源 400uA~10mA宽工作电流
LM236DR-2-5:2.5V基准电压源 400uA~10mA宽工作电流
LM236LP-2-5:2.5V基准电压源 400uA~10mA宽工作电流
LM285D-1-2:微功耗电压基准. 10uA~20mA宽工作电流
LM285D-2-5:微功耗电压基准. 10uA~20mA宽工作电流
LM285LP-2-5:微功耗电压基准. 10uA~20mA宽工作电流
LM336BD-2-5:2.5V基准电压源. 10uA~20mA宽工作电流
LM336BLP-2-5:2.5V基准电压源
LM385BD-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流
LM385BD-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流
LM385BLP-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流
LM385BLP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流
LM385BPW-1-2:微功耗电压基准. 15uA~20mA宽工作电流
LM385BPW-2-5:微功耗电压基准. 15uA~20mA宽工作电流
LM385D-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流
LM385DR-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流
LM385DR-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流
LM385LP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流
LM385PW-1-2:1.2V微功率基准电压源. 15uA~20mA宽工作电流
LM385PW-2-5:2.5V微功率基准电压源. 15uA~20mA宽工作电流
REF02AP:+5V精密电压基准
REF02AU:+5V精密电压基准
REF02BP:+5V精密电压基准
REF02BU:+5V精密电压基准
REF1004I-2.5:+2.5V精密电压基准
REF102AP:10V精密电压基准
REF102AU:10V精密电压基准
REF102BP:10V精密电压基准
REF200AU:双电流基准
REF2912AIDBZT:1.2V电压基准
REF2920AIDBZT:2V电压基准
REF2925AIDBZT:2.5V电压基准
REF2930AIDBZT:3V电压基准
REF2933AIDBZT:3.3V电压基准
REF2940AIDBZT:4V电压基准
REF3012AIDBZT:1.25V,50ppm/℃,50uASOT23-3封装电压基准
REF3020AIDBZT:2.048V,50ppm/℃,50uASOT23-3封装电压基准
REF3025AIDBZT:2.5V,50ppm/℃,50uASOT23-3封装电压基准
REF3033AIDBZT:3.3V,50ppm/℃,50uASOT23-3封装电压基准
REF3040AIDBZT:4.096V,50ppm/℃,50uASOT23-3封装电压基准
REF3120AIDBZT:20ppM(最大)100uA,SOT23封装电压基准
REF3133AIDBZT:20ppm/℃, 100uA, SOT23-3封装3.3V电压基准
TL1431CD:精密可编程输出电压基准
TL1431CPW:精密可编程输出电压基准
LM336BLP-2-5:2.5V基准电压源
LM385-1.2V:1.2V精密电压基准. 15uA~20mA宽工作电流
Xicor公司电压基准
X60003CIG3-50:Xicor 公司电压基准
X60003DIG3-50:Xicor 公司电压基准
X60008BIS8-25:Xicor 公司电压基准
X60008BIS8-41:Xicor 公司电压基准
X60008BIS8-50:Xicor 公司电压基准
X60008CIS8-25:Xicor 公司电压基准
X60008CIS8-41:Xicor 公司电压基准
X60008CIS8-50:Xicor 公司电压基准
X60008DIS8-25:Xicor 公司电压基准
X60008DIS8-41:Xicor 公司电压基准
X60008DIS8-50:Xicor 公司电压基准
X60008EIS8-50:Xicor 公司电压基准
Intersil公司电压基准
电压基准 (Intersil)
ISL60002CIB825:Intersil 公司电压基准
ISL60002CIH325:Intersil 公司电压基准
ISL60002DIB825:Intersil 公司电压基准
ISL60002DIH325:Intersil 公司电压基准
X60003CIG3-50T1:Intersil 公司电压基准
X60003DIG3-50T1:Intersil 公司电压基准
Microchip 微芯电压基准
电压基准 :
MCP1525-I/TT:2.5V电压基准
MCP1525T-I/TT:2.5V电压基准
MCP1541-I/TT:4.096V电压基准
MCP1541T-I/TT:4.096V电压基准
ON 安森美电压基准
电压基准 :
LM285D-1.2G:1.2V电压基准
LM285D-2.5G:2.5V电压基准
LM285D-2.5R2G:2.5V电压基准
LM285Z-2.5G:2.5V电压基准
LM385BD-1.2G:1.2V电压基准
LM385BD-2.5G:2.5V电压基准
LM385BD-2.5R2G:2.5V电压基准
LM385BZ-1.2G:1.2V电压基准
LM385BZ-2.5G:2.5V电压基准
LM385D-1.2G:1.2V电压基准
LM385D-1.2R2G:1.2V电压基准
LM385D-2.5G:1.2V电压基准
MC1403BP1G:低电压参考源
MC1403D:低电压参考源
MC1403DG:低电压参考源
MC1403P1:低电压参考源
MC1403P1G:低电压参考源
NCP100SNT1:精密电压基准
NCP100SNT1G:精密电压基准
NCV1009D:2.5V电压基准
NCV1009DG:2.5V电压基准
NCV1009DR2G:2.5V电压基准
NCV1009ZG:2.5V电压基准
TL431ACDG:可编程精密参考源
TL431ACDR2G:可编程精密参考源
TL431ACLPG:可编程精密参考源
TL431AIDG:可编程精密参考源
TL431AIDMR2G:可编程精密参考源
TL431AIDR2G:可编程精密参考源
TL431AILPG:可编程精密参考源
TL431BCDG:可编程精密参考源
TL431BCDMR2G:可编程精密参考源
TL431BCLPG:可编程精密参考源
TL431BIDG:可编程精密参考源
TL431BIDMR2G:可编程精密参考源
TL431BIDR2G:可编程精密参考源
TL431BILPG:可编程精密参考源
TL431BVDG:可编程精密参考源
TL431BVDR2G:可编程精密参考源
TL431BVLPG:可编程精密参考源
TL431CDG:可编程精密参考源
TL431CLPG:可编程精密参考源
TL431CLPRAG:可编程精密参考源
TL431CPG:可编程精密参考源
TL431IDG:可编程精密参考源
TL431ILPG:可编程精密参考源
TLV431ALPG:低电压精密可调参考源
TLV431ALPRAG:低电压精密可调参考源
TLV431ALPRPG:低电压精密可调参考源
TLV431ASN1T1G:低电压精密可调参考源
TLV431ASNT1G:低电压精密可调参考源
TLV431BLPG:低电压精密可调参考源
TLV431BLPRAG:低电压精密可调参考源
TLV431BSN1T1G:低电压精密可调参考源
TLV431BSNT1G:低电压精密可调参考源
Sipex 半导体公司 Power电源管理器件 电压基准 - - 更多...
SPX1004AN-1.2:1.2伏/2.5伏微功耗电压基准
SPX1004N-2.5:2.5伏微功耗电压基准
SPX1431S:精准可调分流调节器
SPX2431AM:精准可调分流调节器
SPX2431AM-L/TR:SPX2431AM-L/TR
SPX2431M-L:SPX2431M-L
SPX385AM-L-5-0:微功耗电压基准
SPX385AN-1.2:SPX385AN-1.2
SPX431AM5:精准可调分流调节器
SPX431AN-L/TR:SPX431AN-L/TR
SPX431BM1/TR:SPX431BM1/TR
SPX431BM1-L/TR:SPX431BM1-L/TR
SPX431CS:SPX431CS
SPX431LCN-L/TR:SPX431LCN-L/TR
SPX432AM/TR:1.24V精准可调分流调节器
SPX432AM-L/TR:SPX432AM-L/TR


直流稳压电源的直流稳压电源的设计

三相整流变压器的设计包括:一、二次绕组的联结方式,二次侧电压的计算,一、二次侧电流的计算,容量的计算与确定,结构形式的选择等环节。其中一、二次绕组的联结方式及二次侧电压的确定是我们重点分析的内容。本文以某一步进电机驱动器的3个直流电源设计为例进行详细介绍,原理图如图1。 图1 步进电机驱动器直流电源设计的原理图1、二次侧电压的确定二次电压不仅与负载电压(即要设计的直流稳压电源电压)和整流电路有关,而且与稳压器件有关。对于要求高的选桥式整流电路,用电容滤波稳压和稳压器稳压,对于要求低的则可以不稳压或用电容稳压。如在图1中,+7V低压驱动,主要是用来锁相,其电流小、电压低,电压波动对驱动电源的工作状态影响不大,不用稳压;+110V用以高压驱动,断续式供电且频率很高,大的电流和电流变化率会产生很高过电压,因此要用电解电容稳压,电阻限流;+12V用于计算机和集成电路的电源,电流小、电压低,但要求电压稳定、纹波系数小,因此用电容和三端稳压器两级稳压。对于不同的稳压手段,二次电压有着不同的确定方法,理论上这3个电压的计算式相同,即U2=Ud/2.34 或UL=Ud/1.35,计算的3个二次电压分别为:5.2V、81.5V和8.9V,但这样计算的结果在实际中不和适,因此,有些量必须用工程估算式来确定,如三相不可逆整流系统一般用公式UL=(0.9~1.0)·Ud估算,如果直流侧用电解电容滤波时、输出平均值会升高,一般用公式UL=Ud/2½估算;如果直流侧用电容和三端稳压器稳压,为了扩大稳压范围,Ud一般应升高3~6V,再用公式UL=(0.9~1.0)·Ud估算。这样确定的3个二次电压分别为:UL7=0.9×7=6.3V,UL110=110/2½=78V,UL12=16×0.9=14.4V。2、一、二次例电流计算及容量确定二次电流要根据负载电流的大小和整流电路来定,在图1中采用三相桥式整流电路,用式I2=(2/3)½Id求出3个二次电流有效值分别为:3.26A、6.5A、1.63A,就得到3个二次电压和电流。根据变压器一、二次功率近似相等原则,可求得一次电流I1=1.45A,变压器的容量为S=953VA,按1.5kVA选变压器型号。3、一、二次例绕组联结方式的确定三相交压器绕组可以根据需要接成星形或Δ形。三相整流电路一般用于大功率(即负载功率在4kW以上)整流,变压器通常接成Y/Δ、 Δ/Y 2种。Δ/Y接法可使电源线电流有2个阶梯,更接近正弦波,谐波影响小,可控整流电路用得比较多;Y/Δ接法可以提供单相交流电源,减小二次绕组电流,一般用于大功率二极管整流电路;对于小功率三相变压器有时也接成Y/Y型,虽然这种接法会给电网引入谐波.但毕竟其功率小,影响也较小。总之,选的时候既要考虑对电网的影响,又要尽量减小绕组电流,降低绕组绝缘等级。在图1中,7V和12V电流比较小,电压低,选星形接法;110V电流大,电压不是太高,选Δ形接法,可大大降低绕组中电流,减小绕组线径,延长使用寿命;一次绕组的线电压虽然高(380V),但变压器容量只有2kW,一次电流为1.45A,所以选星形接法,可降低绕组的电压和绕组的绝缘等。 1、滤波电路及器件选择整流滤波电路通常有电容、电感和RC等滤波电路。电感滤波是利用电感对脉动电流产生反电动势,阻碍电流变化来实现的,电感越大,滤波效果越好。它一般用于负载电流大、对滤波要求不高的场台。RC滤波电路是电阻和电容连接使用的滤波电路,由于电阻会降低一部分直流电压,直流输出电压会减小,因此只适用于小电流电路。电容滤波是利用电容的充放电作用使整流输出电压变得平稳,而且电压幅值升高,滤波效果好,适于各种整流电路。滤波电容的选择主要是种类和容量、耐压值的确定。常用的整流滤波电容有铝电解、钽电解、涤纶、独石电容等。铝电解电容漏电流大,耐压和工作温度(最高+70℃)较低,但容量大;钽电解电容漏电流小,耐压和工作温度比铝电解电容都高,一般用于要求较高的地方;涤纶电容绝缘电阻大,损耗小,工作温度(最高+55℃)低,容量小,但耐压高;独石电容体积可以做得很小,耐压也可以做得很高,化学性能和热性能比较稳定,但容量小。一般当整流输出电流大时,必须用电解电容滤波稳压;输出电流小时,用一般电容或电解电容滤波都可以,如果对直流输出电压有纹波系数要求或者为了防止高频噪音,用电解电容和小容量无极性电容并联使用效果较好:小容量电容可滤掉脉动直流中的高次谐波, 电解电容滤掉大幅值的低频成分,稳压范围宽、效果好。整流滤波电路对电容器的容量和耐压值要求不是太高,一般根据输出电流大小估算电容器的容量,输出电流大,容量就大;电流小,容量就小。但是,容量太大会降低输出电压值,太小则会导致电压脉动大、不稳定。容量确定可参考表1,耐压值一般取所接电路工作电压的1.5~2倍。2、稳压电路及器件选择稳压电路有分立元件稳压电路和集成稳压电路2种,其中集成稳压电路主要用于低电压小电流的整流电路,具有体积小,电路简单,稳压精度高,使用调试方便等特点。选择时首先要确定系列,是正电源还是负电源,是可调的还是固定的,其次是根据它的额定电压和额定电流选择具体型号;同时,稳压器在接入整流电路时要适当加一些保护元件,如在I/O端接二极管可防止输入端短路,在输入端和地之间接一小电容,可限制输入电压幅值等。直流电源的设计理论上比较简单,但在具体的工程设计中还需要进一步分析、研究、实践和总结。

上一篇:诺亚舟学习机

下一篇:光学高温计