抗生素用树脂吸附为什么解析不下来
水硬度主要由其阳离:钙(Ca2+)、镁(Mg2+)离构 含硬度原水通交换器Na型树脂层水钙、镁离树脂吸附同释放钠离交换器内流水掉硬度离软化水,树脂吸附钙、镁离达定饱度水硬度增软水器按照预定程序自进行失效树脂再工作利用较高浓度氯化钠溶液(盐水)通树脂使失效树脂重新恢复至钠型树脂反应原理:2NaR + Ca2- → CaR2 +2Na除盐水阴阳混床阳树脂H型阴树脂OH型阳树脂交换水阳离释放H根离阴树脂交换水阴离释放OH根离阳树脂释放H+ 与阴树脂释放OH-结合水反应原理:HR + Na+ → NaR + H+ROH + Cl- → RCl + OH-H+ + OH- → H2O
大孔吸附树脂使用周期对吸附量的有哪些影响?
大孔吸附树脂是一种不溶于酸、碱及各种有机溶剂的有机高分子聚合物,应用大孔吸附树脂进行分离的技术是20世纪60年代末发展起来的继离子交换树脂后的分离新技术之一。
大孔树脂(macroporous
resin)又称全多孔树脂,大孔树脂是由聚合单体和交联剂、致孔剂、分散剂等添加剂经聚合反应制备而成。聚合物形成后,致孔剂被除去,在树脂中留下了大大小小、形状各异、互相贯通的孔穴。因此大孔树脂在干燥状态下其内部具有较高的孔隙率,且孔径较大,在100~1000nm之间。
大孔吸附树脂[1]是以苯乙烯和丙酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构。树脂一般为白色的球状颗粒,是一类含离子交换集团的交联聚合物,它的理化性质稳定,不溶于酸、碱及有机溶剂,不受无机盐类及强离子低分子化合物的影响。
陶氏大孔树脂吸附作用是依靠它和被吸附的分子(吸附质)
之间的范德华引力,通过它巨大的比表面进行物理吸附而工作,使有机化合物根据有吸附力及其分子量大小可以经一定溶剂洗脱分开而达到分离、纯化、除杂、浓缩等不同目的。
吸附条件和解吸附条件的选择直接影响着大孔吸附树脂吸附工艺的好坏,因而在整个工艺过程中应综合考虑各种因素,确定最佳吸附解吸条件。影响树脂吸附的因素很多,主要有被分离成分性质(极性和分子大小等)
、上样溶剂的性质(溶剂对成分的溶解性、盐浓度和PH 值) 、上样液浓度及吸附水流速等。
通常极性较大分子适用中极性树脂上分离,极性小的分子适用非极性树脂上分离;体积较大化合物选择较大孔径树脂;上样液中加入适量无机盐可以增大树脂吸附量;酸性化合物在酸性液中易于吸附,碱性化合物在碱性液中易于吸附,中性化合物在中性液中吸附;一般上样液浓度越低越利于吸附;对于滴速的选择,则应保证树脂可以与上样液充分接触吸附为佳。影响解吸条件的因素有洗脱剂的种类、浓度、pH值、流速等。洗脱剂可用甲醇、乙醇、丙酮、乙酸乙酯等,应根据不同物制裁在树脂上吸附力的强弱,选择不同的洗脱剂和不同的洗脱剂浓度进行洗脱;通过改变洗脱剂的pH
值可使吸附物改变分子形态,易于洗脱下来; 洗脱流速一般控制在0. 5 ~5mL/ min。
大孔吸附树脂是近代发展起来的一类有机高聚物吸附剂,70年代末开始将其应用于中草药成分的提取分离。中国医学科学院药物研究所植化室试用大孔吸附树脂对糖、生物碱、黄酮等进行吸附,并在此基础上用于天麻、赤勺、灵芝和照山白等中草药的提取分离,结果表明大孔吸附树脂是分离中草药水溶性成分的一种有效方法。用此法从甘草中可提取分离出甘草甜素结晶。以含生物碱、黄酮、水溶性酚性化合物和无机矿物质的4种中药有效部位的单味药材(黄连、葛根、丹参、石膏)水提液为样本,在LD605型树脂上进行动态吸附研究,比较其吸附特性参数。结果表明除无机矿物质外,其它中药有效部位均可不同程度的被树脂吸附纯化。不同结构的大孔吸附树脂对亲水性酚类衍生物的吸附作用研究表明不同类型大孔吸附树脂均能从极稀水溶液中富集微量亲水性酚类衍生物,且易洗脱,吸附作用随吸附物质的结构不同而有所不同,同类吸附物质在各种树脂上的吸附容量均与其极性水溶性有关。用D型非极性树脂提取了绞股蓝皂甙,总皂甙收率在2.15%左右。用D1300大孔树脂精制“右归煎液”,其干浸膏得率在4~5%之间,所得干浸膏不易吸潮,贮藏方便,其吸附回收率以5-羟甲基糖醛计,为83.3%。用D-101型非极性树脂提取了甜菊总甙,粗品收率8%左右,精品收率在3%左右。用大孔吸附树脂提取精制三七总皂甙,所得产品纯度高,质量稳定,成本低。将大孔吸附树脂用于银杏叶的提取,提取物中银杏黄酮含量稳定在26%以上。江苏色可赛思树脂有限公司整理用大孔吸附树脂分离出的川芎总提物中川芎嗪和阿魏酸的含量约为25%~29%,收率为0.6%。另外大孔吸附树脂还可用于含量测定前样品的预分离。
2优点
大孔吸附树脂的孔径与比表面积都比较大,在树脂内部具有三维空间立体孔结构,具有物理化学稳定性高、比表面积大、吸附容量大、选择性好、吸附速度快、解吸条件温和、再生处理方便、使用周期长、宜于构成闭路循环、节省费用等诸多优点。
3用途
大孔吸附树脂吸附技术最早用于废水处理、医药工业、化学工业、分析化学、临床检定和治疗等领域,近年来在我国已广泛用于中草药有效成分的提取、分离、纯化工作中。与中药制剂传统工艺比较,应用大孔吸附树脂技术所得提取物体积小、不吸潮、易制成外型美观的各种剂型,特别适用于颗粒剂、胶囊剂和片剂,改变了传统中药制剂的粗、黑、大现象,有利于中药制剂剂型的升级换代,促进了中药现代化研究的发展,国家中医药管理局等单位联合发布的2002~2010《医药科学技术政策》明确提出:研制开发中药动态逆流提取、超临界萃取、中药饮片浸润、大孔树脂分离等技术。
参考资料:http://baike.baidu.com/view/583275.htm
阳离子交换树脂阳离子交换树脂吸附什么离子
1、阳离子交换树脂和阴离子交换树脂的区别是什么?2、阳离子交换树脂的用途和原理?3、阳离子交换树脂和阴离子交换树脂有什么区别?阳离子交换树脂和阴离子交换树脂的区别是什么?阳离子交换树脂和阴离子交换树脂的区别最主要在于,阳离子交换树脂主要吸附水中的阳离子,阴离子交换树脂主要吸附水中的阴离子。具体区别:离子交换树脂可分为两类,阳离子交换树脂和阴离子交换树脂,并且可以分别交换溶液中的阳离子和阴离子。阳离子交换树脂:活性基团是阳离子,例如氢离子或钠离子。树脂上的活性基团再次与溶液中的阳离子交换,氢离子或钠离子流入,溶液中的阳离子返回树脂。清洗后,将目标物质的阳离子洗掉,以进行分离和纯化。阴离子交换树脂:活性基团是阴离子,例如氢氧根离子和氯离子。再次将加载溶液中的阴离子交换为氢氧根或氯离子,以使目标物质与树脂融合并洗去。阳离子交换树脂和阴离子交换树脂的吸附顺序不同阳离子树脂又分为强酸和弱酸两种,阴离子树脂又分为强碱和弱碱(或中等强酸和中等强碱)两种。离子交换树脂对溶液中的不同离子具有不同的亲和力,并且对吸附具有选择性。进行树脂交换吸附的各种离子的强度有一般规则,但是不同的树脂可能会略有不同。阳离子交换树脂的用途和原理?阳离子交换树脂阳离子交换树脂的用途阳离子交换树脂:一、食品行业:离子交换树脂可以用来制糖、饮料、酒、味精等领域阳离子交换树脂,高果糖浆就是通过离子交换树脂处理后生成的一种产品阳离子交换树脂,离子交换树脂在食品行业中的应用非常广泛,且效果非常好,能够有效的去除液体的离子。二、化工行业:在有机合成中,离子交换树脂可以作为催化剂,进行酯化、水解等反应,而且可以反复使用,分离的效果非常好,也不会对环境造成污染,能够有效的控制,且不会对人体造成危害。三、制药行业:在70年代就已经开始使用离子交换树脂进行制药,一开始是用于药物的提取、分离以及纯化等,由于离子交换的可逆性,所以在缓控释给药系统和靶向给药系统中也有应用,离子交换树脂不仅能够有效的控制,且非常的安全。阳离子交换树脂的原理:阳树脂分弱树脂和强树脂两大类。阳离子交换树脂分子式H-R(当然也可以是Na-R型), H就是氢离子。树脂高度约0.8米到1.6米。当水从上向下,通过树脂层时,水中的阳离子与树脂的H离子发生交换,树脂较上层是铁钙镁离子,接着是钾钠铵离子。出水水质是酸性的,PH值一般小于3。当运行约一天左右时,出水开始出现钠离子,表示反应到了终点,需要用酸(HCl)反洗,将钠钙离子再置换出来。阳离子交换树脂和阴离子交换树脂有什么区别?阳离子交换树脂与阴离子交换树脂的区别:1.阴树脂的功能基团是碱性基团,比如羧基-COOH。阴离子交换树脂根据功能基团内所含有的离子,可以分为HO-型树脂和CL-型树脂,通过离子吸附的原理对水中阴离子进行吸附,去除水中的阴离子,使产水达到使用要求。2.阳离子交换树脂是在7%的苯乙烯和二乙烯共聚物的交联中具有磺酸基(-SO3 H)的阳离子交换树脂,是磺化的苯乙烯凝胶型强酸阳离子交换树脂。即使在碱性,中性和酸性介质中也具有离子交换功能。3.阳离子交换树脂主要用于饮用水的软化,锅炉水的软化,工业水处理,工业废水处理,食品工业,制药精制,制糖,冷凝水精制等,制备超纯水。4.阴离子交换树脂主要用于去除强酸和弱酸。电泳漆,湿法冶金,食品加工,生物制药加工,制药业,脱盐,二氧化硅去除,冷凝液抛光,有机物去除等的去除和精加工。实际上,在选择离子交换树脂时,它主要取决于其应用领域。通常,最好使用阳离子树脂进行水软化处理,最好使用阴离子树脂进行电泳涂膜和脱盐。当用于超纯水处理时,建议使用阴离子和阳离子的混床树脂。
阳离子树脂的不同离子的吸附能力
阳离子交换树脂对不同阳离子吸附能力的强弱顺序阳离子交换树脂对存在于溶液中的不同阳离子吸附能力不同,一般而言,对高价离子的吸附能力大于对低价离子的吸附能力;同价离子,对大直径离子吸附能力大于对小直径离子吸附能力。对常见阳离子吸附能力强弱顺序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
树脂的吸附能力去决于什么
亲亲,影响树脂吸附的因素很多,主要有被分离成分性质(极性和分子大小等)、上样溶剂的性质(溶剂对成分的溶解性、盐浓度和PH值)、上样液浓度及吸附水流速等。通常,极性较大分子适用中极性树脂上分离,极性小的分子适用非极性树脂上分离;体积较大化合物选择较大孔径树脂哦。[鲜花][鲜花]【摘要】
树脂的吸附能力去决于什么【提问】
亲亲,非常荣幸为您解答[开心][开心]树脂的吸附能力去决于树脂结构的影响,被吸附的化合物的结构哦。[鲜花]影响树脂吸附的因素很多,主要有被吸附物质的性质、溶剂对成分的溶解能力、盐浓度和酸碱值等哦。[鲜花][鲜花]【回答】
亲亲,影响树脂吸附的因素很多,主要有被分离成分性质(极性和分子大小等)、上样溶剂的性质(溶剂对成分的溶解性、盐浓度和PH值)、上样液浓度及吸附水流速等。通常,极性较大分子适用中极性树脂上分离,极性小的分子适用非极性树脂上分离;体积较大化合物选择较大孔径树脂哦。[鲜花][鲜花]【回答】
树脂的吸附容量与什么有关?
离子交换树脂交换容量:离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。详情点击:网页链接