聚类分析

时间:2024-04-07 22:45:29编辑:奇事君

为什么要进行聚类分析呢?

1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。扩展资料:聚类效果的检验:一、聚类分析后得到的每个类别是否可以进行有效的命名,每个类别的特征情况是否符合现实意义,如果研究者可以结合专业知识对每个聚类类别进行命名,即说明聚类效果良好,如果聚类类别无法进行命名,则需要考虑重新进行聚类分析。二、使用判别分析方法进行判断,将SPSS生成的聚类类别变量作为因变量(Y),而将聚类变量作为自变量(X)进行判别分析,判别分析具体分析聚类变量与类别之间投影关系情况,如果研究人员对聚类分析效果非常在乎,可以使用判别分析进行分析。三、聚类分析方法的详细过程说明,描述清楚聚类分析的科学使用过程,科学的聚类分析方法使用即是良好结果的前提保障。是、聚类分析后每个类别样本数量是否均匀,如果聚类结果显示为三个类别,有一个类别样本量非常少,比如低于30,此时很可能说明聚类效果较差。针对聚类效果的判断,研究者主要是结合专业知识判断,即聚类类别是否可以进行有效命名。参考资料来源:百度百科—聚类分析

聚类分析优缺点

优缺点如下:1、优点k-平均算法是解决聚类问题的一种经典算法,算法简单、快速。对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt) O(nkt)O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法经常以局部最优结束。算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,而簇与簇之间区别明显时,它的聚类效果很好。2、缺点对K值敏感。也就是说,K的选择会较大程度上影响分类效果。在聚类之前,我们需要预先设定K的大小,但是我们很难确定分成几类是最佳的,比如上面的数据集中,显然分为2类,即K = 2最好,但是当数据量很大时,我们预先无法判断。对离群点和噪声点敏感。如果在上述数据集中添加一个噪音点,这个噪音点独立成一个类。很显然,如果K=2,其余点是一类,噪音点自成一类,原本可以区分出来的点被噪音点影响,成为了一类了。如果K=3,噪音点也是自成一类,剩下的数据分成两类。这说明噪音点会极大的影响其他点的分类。聚类分析特点聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。层次聚类分析是根据观察值或变量之间的亲疏程度,将最相似的对象结合在 一起,以逐次聚合的方式(Agglomerative Clustering),它将观察值分类,直到最后所有样本都聚成一类。层次聚类分析有两种形式,一种是对样本(个案)进行分类,称为Q型聚类;另一种是对研究对象的观察变量进行分类,称为R型聚类。

上一篇:棋盘游戏

下一篇:红外感应