空化

时间:2024-04-07 20:44:47编辑:奇事君

空化效应是什么?

空化作用是指存在于液体中的微气核空化泡在声波的作用下振动,当声压达到一定值时发生的生长和崩溃的动力学过程。超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。扩展资料:超声波能量足够高时,就会产生“超声波空化”现象。存在于液体中的微小气泡(空化核)在超声场的作用下振动、生长并不断聚集声场能量,当能量达到某个阈值时,空化气泡急剧崩溃闭合的过程。现象气泡的寿命约0.1μs,它在急剧崩溃时可释放出巨大的能量,并产生速度约为110m/s、有强大冲击力的微射流,使碰撞密度高达1.5kg/cm2。现象气泡在急剧崩溃的瞬间产生局部高温高压(5000K,1800atm),冷却速度可达10的9次方K/s。

什么是空化效应 空化效应解释

1、超声波空化作用(空化效应)是指存在于液体中的微气核空化泡在声波的作用下振动,当声压达到一定值时发生的生长和崩溃的动力学过程。

2、超声波作用于液体时可产生大量小气泡 。一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。

3、水力空化是指在液体经过的管道某处人为制造低压强、高流速的状态,当液体压强小于饱和蒸汽压时,液体中的气泡就会不断膨胀,体积变大。而随着流体运动,气泡到达高压强、低流速区域之后,气泡就会塌缩、爆裂。


空化效应原理及讲解(空化效应)

您好,现在我来为大家解答以上的问题。空化效应原理及讲解,空化效应相信很多小伙伴还不知道,现在让我们一起来看看吧!1、超声波空化作用... 您好,现在我来为大家解答以上的问题。空化效应原理及讲解,空化效应相信很多小伙伴还不知道,现在让我们一起来看看吧! 1、超声波空化作用(空化效应)是指存在于液体中的微气核空化泡在声波的作用下振动,当声压达到一定值时发生的生长和崩溃的动力学过程。 2、超声波作用于液体时可产生大量小气泡 。 3、一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。 4、另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。 5、水力空化是指在液体经过的管道某处人为制造低压强、高流速的状态,当液体压强小于饱和蒸汽压时,液体中的气泡就会不断膨胀,体积变大。 6、而随着流体运动,气泡到达高压强、低流速区域之后,气泡就会塌缩、爆裂。 7、扩展资料:当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生一系列力学的、热学的、电磁学的和化学的超声效应,包括以下4种效应:机械效应。 8、超声波的机械作用可促成液体的乳化、凝胶的液化和固体的分散。 9、当超声波流体介质中形成驻波时,悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,在空间形成周期性的堆积。 10、超声波在压电材料和磁致伸缩材料中传播时,由于超声波的机械作用而引起的感生电极化和感生磁化(见电介质物理学和磁致伸缩)。 11、2、空化作用。 12、超声波作用于液体时可产生大量小气泡。 13、一个原因是液体内局部出现拉应力而形成负压,压强的降低使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。 14、另一原因是强大的拉应力把液体“撕开”成一空洞,称为空化。 15、空洞内为液体蒸气或溶于液体的另一种气体,甚至可能是真空。 16、因空化作用形成的小气泡会随周围介质的振动而不断运动、长大或突然破灭。 17、3、热效应。 18、由于超声波频率高,能量大,被介质吸收时能产生显著的热效应。 19、4、化学效应。 20、超声波的作用可促使发生或加速某些化学反应。 21、例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理后会变色或退色。 22、参考资料来源:百度百科——空化作用。

空化现象

超声波空化作用是指存在于液体中的微气核空化泡)在声波的作用下振动,当声压达到一定值时发生的生长和崩溃的动力学过程。空化作用一般包括3个阶段:空化泡的形成、长大和剧烈的崩溃。当盛满液体的容器当通入超声波后,由于液体振动而产生数以万计的微小气泡,即空化泡。这些气泡在超声波纵向传播形成的负压区生长,而在正压区迅速闭合,从而在交替正负压强下受到压缩和拉伸。在气泡被压缩直至崩溃的一瞬间,会产生巨大的瞬时压力,一般可高达几十兆帕至上百兆帕。 Suslick等人测得:空化可使气相反应区的温度达到5 200 K左右,液相反应区的有效温度达到1 900 K左右,局部压力在5.O5× 10 kPa,温度变化率高达10。K/s,并伴有强烈的冲击波和时速达400 km 的微射流。这种巨大的瞬时压力,可以使悬浮在液体中的固体表面受到急剧的破坏。通常将超声波空化分为稳态空化和瞬间空化2种类型:稳态空化是指在声强较低(一般小于10 w/cm )时产生的空化泡,其大小在其平衡尺寸附近振荡,生成周期达数个循环。当扩大到使其自身共振频率与声波频率相等时,发生声场与气泡的最大能量耦合,产生明显的空化作用。瞬态空化则是指在较大的声强(一般大于1O w/cm )作用下产生的生存周期较短的空化泡(大都发生在1个声波周期内)。
超声波的广泛的运用于各个领域就是应用了其空化作用以及其空化伴随着机械效应、热效应、化学效应、生物效应等等,机械效应和化学效应的应用,前者主要表现在非均相反应界面的增大;后者主要是由于空化过程中产生的高温高压使得高分子分解、化学键断裂和产生自由基等。利用机械效应的过程包括吸附、结晶、电化学、非均相化学反应、过滤以及超声清洗等,利用化学效应的过程主要包括有机物降解、高分子化学反应以及其他自由基反应。

影响超声波空化的因素
超声波空化作用的强弱与声学参数以及液体的物理化学性质有关
1)超声波强度 超声波强度指单位面积上的超声功率,空化作用的产生与超声波强度有关。对于一般液体超声波强度增加时,空化强度增大,但达到一定值后,空化趋于饱和,此时再增加超声波强度则会产生大量无用气泡,从而增加了散射衰减,降低了空化强度。
2) 超声波频率超声波频率越低,在液体中产生空化越容易。也就是说要引起空化,频率愈高,所需要的声强愈大。例如要在水中产生空化,超声波频率在 400 kHz时所需要的功率要比在10 kHz时大1o倍,即空化是随着频率的升高而降低。一般采用的频率范围20~40 kHz。
3)液体的表面张力与黏滞系数 液体的表面张力越大,空化强度越高,越不易于产生空化。黏滞系数大的液体难以产生空化泡,而且传播过程中损失也大,因此同样不易产生空化。
4)液体的温度液体温度越高,对空化的产生越有利,但是温度过高时,气泡中蒸汽压增大,因此气泡闭合时增强了缓冲作用而使空化减弱。


上一篇:led显示器

下一篇:手电大家谈