Sobel算子的核心公式
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经纵向及横向边缘检测的图像,其公式如下: 图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。然后可用以下公式计算梯度方向。 在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。
Sobel算子的由来
对于已经写入数字图像处理及机器视觉教科书多年的Sobel算子,谁也没曾追问和关心过它的发明背景和历史。最近,给学生上“光电图像处理”课,想介绍一下该算子的来历,查了很多文献,就是找不到原始文献。Google学术里搜索,信息很多,却不一致。有标注为期刊论文的,也有标注出版物析出的,出版时间也不一致(冈萨雷斯《Digital Image Processing》教材标注的时间为1970年)。这个看似简单,但领域内科研、开发人员沿用了几十年的边缘检测算子究竟如何产生的?偶然发现了一个帖子,该算子的提出者Irwin Sobel在算子产生多年后于该帖中详细谈到它的由来和定义。原来,这个著名的Sobel边缘算子,当年作者并没有公开发表过论文,仅仅是在一次博士生课题讨论会(1968)上提出("A 3x3 Isotropic Gradient Operator for Image Processing"),后在1973年出版的一本专著("Pattern Classification and Scene Analysis")的脚注里作为注释出现和公开的。