图像增强

时间:2024-04-04 11:24:48编辑:奇事君

图像增强的方法有哪些

图像增强的方法包括线性灰度增强、亮度工具来提亮图像、饱和度增亮图片颜色、直方图均衡化等。1、线性灰度增强。线性灰度增强,将图像中所有点的灰度按照线性灰度变换函数进行变换。在曝光不足或过度的情况下,图像的灰度可能局限在一个很小的灰度范围内,这时图像可能会很模糊不清。利用一个线性单值函数对图像内的每一个像素做线性拓展,将会有效地改善图像的视觉效果。2、用亮度工具来提亮图像。亮度是指图像曝光的光亮。传统方法上,这将取决于相机镜头的快门速度。快门速度会让最少的光线进入,而较慢的快门速度会让最多的光线进入。为增加亮度,可以把亮度滑块(工具)通过向右移动,使更多的光线进入并产生更亮的色调,而降低亮度会导致更暗的色调。3、用饱和度增亮图片颜色。饱和度是指图像中颜色的强度。当颜色完全饱和时,它看起来生动而明亮。增加饱和度将增强你的图像的色彩度,而降低饱和度将使图片变得具有柔和和朦胧感。4、直方图均衡化。将原始图像的直方图通过积分概率密度函数转化为概率密度为1(理想情况)的图像,从而达到提高对比度的作用。直方图均衡化的实质也是一种特定区域的展宽,但是会导致整个图像向亮的区域变换。

常见的图像增强的方法

姓名:赵若宏

学号:19021210951

https://www.cnblogs.com/wangduo/p/5555252.html

嵌牛导读: 图像增强 的方法 是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

嵌牛鼻子:图像处理 图像增强

嵌牛正文:

1. 对比度拉升

采用了线性函数对图像的灰度值进行变换

2. Gamma校正

采用了非线性函数(指数函数)对图像的灰度值进行变换

这两种方式的实质是对感兴趣的图像区域进行展宽,对不感兴趣的背景区域进行压缩,从而达到图像增强的效果

3. 直方图均衡化

将原始图像的直方图通过积分概率密度函数转化为概率密度为1(理想情况)的图像,从而达到提高对比度的作用。直方图均衡化的实质也是一种特定区域的展宽,但是会导致整个图像向亮的区域变换。当原始图像给定时,对应的直方图均衡化的效果也相应的确定了。

4. 直方图规定化

针对直方图均衡化的存在的一些问题,将原始图像的直方图转化为规定的直方图的形式。一般目标图像的直方图的确定需要参考原始图像的直方图,并利用多高斯函数得到。

5. 同态滤波器

图像的灰度图像f(x,y)可以看做为入射光分量和反射光分量两部分组成:f(x,y)=i(x,y)r(x,y).入射光比较的均匀,随着空间位置变化比较小,占据低频分量段。反射光由于物体性质和结构特点不同从而反射强弱很不相同的光,随着空间位置的变化比较的剧烈。占据着高频分量。基于图像是由光照谱和反射谱结合而成的原理设计的。




基于HSV空间的彩色图像增强方法

针对于灰度图像,我们主要有以上的几种处理方法,但是针对于彩色图像,由于存在RGB分量,故而不能直接将灰度图像的处理方法应用。因为直接对每一个分量使用灰度增强的方法会导致颜色的紊乱发生。

而我们可以将RGB图像转化为其他空间的图像,比如:我们可以将RGB空间的图像转换为HSV空间的图像。HSV分别指色调,饱和度,亮度。由于调整HSV三个不同的量,我们可以得到比较直观的


图像增强的目的是

图像增强就是指通过某种图像处理方法对退化的某些图像特征,如边缘、轮廓、对比度等进行处理,以改善图像的视觉效果,提高图像的清晰度,或是突出图像中的某些“有用”,压缩其他“无用”信息,将图像转换为更适合人或计算机分析处理的形式。图像增强可以分为两类:空间域法和频域法。空间域可以简单地理解为包含图像像素的空间,空间域法是指空间域中,也就是图像本身,直接对图像进行各种线性或非线性运算,对图像的像素灰度值做增强处理。频域法则是在图像的变换域中把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。对其进行基于二维傅里叶变换的信号增强。


图像增强的方法有哪些

图像处理技术与机器视觉密切相关,图像在采集过程中不可避免的会受到传感器灵敏度、噪声干扰以及模数转换时量化问题等各种因素的影响,而导致图像无法达到令人满意的视觉效果,为了实现人眼观察或者机器自动分析、识别的目的,对原始图像所做的改善行为,就被称作图像增强。图像增强处理主要内容是突出图像中感兴趣的部分,减弱或去除不需要的信息。这样使有用信息得到加强,从而得到一种更加实用的图像或者转换成一种更适合人或机器进行分析处理的图像。-一般而言,图像增强是根据具体的应用场景和图像的模糊情况而采用特定的增强方法来突出图像中的某些信息,削弱或消除无关信息,以达到强调图像的整体或局部特征的目的。图像增强的方法主要分为两类:空域增强法和频域增强法。空域增强法直接针对图像中的像素,对图像的灰度进行处理;频域增强法是基于图像的Fourier变换式对图像频谱进行改善,增强或抑制所希望的频谱。常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。由于对图像质量的要求越来越高,单一的增强处理往往难以达到令人满意的效果。因此,在图像的实际增强处理中,常常是几种方法组合运用,各取所长以达到最佳的增强效果。

图像增强的三种方法

图像增强的三种方法有点增强、空域增强、频域增强。1、点增强点增强主要指图像灰度变换和几何变换。图像的灰度变换也称为点运算、对比度增强或对比度拉伸,它是图像数字化软件和图像显示软件的重要组成部分。灰度变换是一种既简单又重要的技术,它能让用户改变图像数据占据的灰度范围。一幅输入图像经过灰度变换后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。灰度变换不会改变图像内的空间关系。2、空域增强图像的空间信息可以反映图像中物体的位置、形状、大小等特征,而这些特征可以通过一定的物理模式来描述。例如物体的边缘轮廓由于灰度值变化剧烈一般出现高频率特征,而一个比较平滑的物体内部由于灰度值比较均一则呈现低频率特征。因此,根据需要可以分别增强图像的高频和低频特征。3、频域增强图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强。频域增强技术是在数字图像的频率域空间对图像进行滤波,因此需要将图像从空间域变换到频率域,一般通过傅里叶变换实现。在频率域空间的滤波与空域滤波一样可以通过卷积实现,因此傅里叶变换和和卷积理论是频域滤波技术的基础。图像增强的注意事项提高图像整体和局部的对比度,图像增强算法不仅仅只是使图像整体的对比度提高,而且还能使得图像的局部细节信息得到相应的增强。在增强图像的同时,应该避免放大噪声,这在一定程度上将会对图像质量造成影响。增强后的图像应该具有良好的视觉效果,避免增强后的图像局部增强过度或过弱。图像增强应该具备较好的实时性。近年来应用最为广泛的图像增强算法包含直方图均衡、小波变换、偏微分方程以及基于Retinex理论的图像增强算法。

上一篇:红外对射

下一篇:冠城广场