多元线性回归分析步骤
一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。设y为因变量,x_1,x_2,\cdotsx_k为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:y=b_0+b_1x_1+b_2x_2+\cdots+b_kx_k+e其中,b0为常数项,b_1,b_2,\cdotsb_k为回归系数。b1为x_2,x_3\cdotsx_k固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为x1,xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线性相关时,可用二元线性回归模型描述为:y=b0+b1x1+b2x2+e。
多元线性回归分析可以应用在哪些方面
(1)确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们之间合适的数学表达式; (2)根据一个或几个变量的值,预测或控制另一个变量的取值,并且可以知道这种预测或控制能达到什么样的精确度; (3)进行因素分析。例如在对于共同影响一个变量的许多变量(因素)之间,找出哪些是重要因素,哪些是次要因素,这些因素之间又有什么关系等等。多元线性回归简介在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。以上内容参考百度百科-多元线性回归
多元回归分析类型
多元回归分析类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。回归分析的任务就是, 通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进 而达到通过X去预测Y的目的。常见的回归分析有五类:线性回归、0‐1回归(逻辑回归)、定序回归、计数回归 和生存回归,其划分的依据是因变量Y的类型。1.因变量还可以有多种类别:(1)连续数值型变量(2)0-1型变量:结果只有两种并且相互对立。(3)定序变量:拥有一定的顺序如:优秀、良好、中等、及格、不及格。(4)计数变量:代表发生次数。(5)生存变量:截止数据(不确定),例如:寿命80+,截止到今年他80岁,具体他能够活到多少岁,还不知道。2.这就是回归分析要完成的三个使命:第一、识别重要变量;第二、判断相关性的方向;第三、要估计权重(回归系数(必须要去量纲))3.回归分析的分类:OLS:普通最小二乘GLS:广义最小二乘