原子荧光光谱仪的原理
原理是 基态原子 (一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以 光辐射 的形式发射出特征波长的荧光。 原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。
从原理,仪器基本结构和方法特点上比较原子吸收光谱与原子发射光谱的异同点
1、原理不同原子发射光谱法:发射原子线和离子线;原子吸收光谱法:基态原子的吸收。2、仪器基本结构不同原子发射光谱法:原子发射使用火焰发射头;原子吸收光谱法:原子吸收使用火焰燃烧头。3、能量传递的方式不同原子发射光谱法:通过测试元素发射的特征谱线及谱线强度来定性定量的;原子吸收光谱法:通过测试元素对特征单色辐射的吸收值来定量的。4、特点不同原子发射光谱法:可进行定性和定量分析及多元素同时分析;原子吸收光谱法:只可进行定量分析,但准确度更高。参考资料来源:百度百科--原子发射光谱法参考资料来源:百度百科--原子吸收光谱法
什么是荧光光谱仪?
很多文献上紫外吸收光谱和荧光光谱谱图的纵坐标都写au,但实际上两者单位是不同的,紫外光一般用吸光度(Absorbance Unit,简写A.U.)。一般说来,荧光光谱仪输出百的原始数据单位是CPS,即每秒钟接受到的荧光光子度数量。但这个数据是无法重现的,因为每一台仪器的问光源亮度不同,狭缝宽度可以自由设置,检测器答灵敏度也有差异。所以习惯上使用au。同一次测试的专各个数据可以放到同一个坐标系中用au比较相对大小。但不同属来源的数据是不能用au进行直接比较的。相关内容解释:物体经过较短波长的光照,把能量储存起来,然后缓慢放出较长波长的光,放出的这种光就叫荧光。如果把荧光的能量—波长关系图作出来,那么这个关系图就是荧光光谱。荧光光谱当然要靠光谱检测才能获得。高强度激光能够使吸收物质中相当数量的分子提升到激发量子态。因此极大地提高了荧光光谱的灵敏度。以激光为光源的荧光光谱适用于超低浓度样品的检测,例如用氮分子激光泵浦的可调染料激光器对荧光素钠的单脉冲检测限已达到10摩尔/升,比用普通光源得到的最高灵敏度提高了一个数量级。