【锁相环中电荷泵的研究】电荷泵锁相环
[摘 要]锁相环的运用已经越来越广泛,从时钟产生器到无线通信到有线通信,光通信等等。在实际应用中,很多工程师都倾向于使用电荷泵型锁相环。因为它更容易实现尽可能大的或者无限开环增益。这样,电荷泵在该种结构中将充当非常重要的角色,其中的不理想性将会对整个系统的性能,比如时钟抖动,相位噪声,锁定时间,带宽,功耗等的设计带来挑战。本文将就以上问题进行详细的分析和研究。最后本文提出了一种改善性能的增益提高技术电荷泵。
[关键词]锁相环 电荷泵 相位噪声 抖动
[中图分类号]TN4[文献标识码]A[文章编号]1007-9416(2010)03-0127-02
引言
基于电荷泵型的锁相环已经被广泛采用与无线通信系统中,特别是射频收发机的频率综合器中。随着无线通信不断地发展,通信系统对终端的要求不断地提高,诸如集成度,功耗,噪声等等。而在无线收发机中,频率综合器是一个非常关键的部分,它的性能将影响整个系统是否能够正常工作。作为基于电荷泵的频率综合器,电荷泵在其中起着非常关键的作用。本文接下来几个部分将对电荷泵做一详细全面的研究。
1 设计中的不理想性
一般的电荷泵型锁相环如图1所示[1]。理想情况下,电荷泵和鉴频鉴相器为系统提供了无限的直流增益,于是输入和输出的相位差为0。但是,作为电荷泵,其本身存在很多固有的不理想性,致使实际的频率综合器会有很多不理想效应产生,从而导致性能的降低。因此,下面将对其中重要的不理想效应进行研究和分析。
1.1 漏电流
漏电流是电荷泵固有的不理想性,或者说是和完全和工艺相关的。随着工艺的不断改进,特别是深亚微米级的CMOS工艺,漏电流的问题变得越来越严重。因为漏电流而导致的相位失配相对来说问题不大,但是由此而产生的参考毛刺在频率综合器中是值得特别注意的。
由于漏电流造成的相位失配可以有下式得出[2],其中是相位失配,是漏电流大小,表示电荷泵的电流大小。
由于相位失配所导致的边带,也就是参考毛刺的大小为:
其中,为环路滤波器的极点,是环路滤波器的电阻值,是压控振荡器的增益。
1.2 电流源的失配
另一种重要的不理想性是电流源的失配。在CMOS电荷泵中存在两个电流源,分别是PMOS电流源和NMOS电流源。两个电流源分别有UP和DOWN两个开关来控制。于是,电流的失配和开关时间的视频必然会存在于电荷泵中。对于开关时间的失配是一个很容易解决的问题,但对于电流的失配是一个难以解决的问题,值得更进一步的研究。我们假设PMOS和NMOS电流源同时导通时间为,两个电流源的失配电流大小为,于是我们可以估算出由于电流失配而导致的相位失配:
(1.3)
由公式可知,我们有以下几个途径减小由于适配造成的相位差影响:第一,从根源出发,减小电流源的适配度,但往往这很难做到,因为这个和工艺,和后续的版图等等都有关系,而且做到完全匹配是不可能做到的;第二,可以减小两个电流源同时导通的时间,但这个又受到其他性能的影响,最主要的便是为了避免电荷泵的死区,所以我们必须首先保证能避免死区所需要的最小输出脉冲宽度,这也是两个电流源同时导通的最小时间;第三,我们可以增大电荷泵的绝对电流值,但是正如前面分析,的值关联到很多其他动态性能,比如环路增益,带宽等等之类的,更关键的我们必须考虑到功耗的问题,所以往往不能过大;最后,我们可以通过增加来减小这个效应。但是增加意味着减小参考频率,这就制约了整个环路所能工作的最大带宽。为了保证环路的稳定性,通常环路带宽取参考频率的二十分之一到十分之一为合适。
1.3 沟道调制效应伴随的恒流输出电压
沟道调制效应是MOS管所固有的二级非理想效应,这个效应在电荷泵中同样存在。由于沟道调制效应而造成的非恒流输出电压在很大程度上制约着频率综合器的整体性能。在很多设计中,我们必须非常重视该效应。
当输出电压改变时,由于电荷泵有限的输出电阻,导致电荷泵的输出电流随着电压的改变而改变,从而无法达到一个恒定的电流。当锁相环处于锁定状态,控制线上的控制电压将因此而产生电压的波动。从而会进一步造成压控振荡器的输出相位噪声和边带都变差[3]。
诸如开关速度,噪声等等其他不理想因素不在本论文的讨论范围内,所以不做多余的研究和说明。
2 增益提高技术电荷泵
图2.1(a)给出了增益提高技术的基本概念[4]。通过添加一个负反馈回路,我们可以使得输出电阻大大提高,不难得到,
一种简单实现如图2.2(b)所示,其输出电阻,。
运用该技术,我们可以很容易设计出一个单端输出的电荷泵[5],如图2(a)所示。该电荷泵可以具有非常的的输出电阻,从而最大程度上减小了因为有限的输出电阻而导致的电流失配。然而,这个结构存在一个比较严重的缺陷。对于输出电压,我们很容易分析出,最低输出电压为,最高输出电压为。输出电压的摆幅几乎小了2倍的。这对于很多需要有大的调节范围的频率综合器来说是一个很大的问题。在此基础上,本文做出了修改,如图2(b)所示,这样输出电压的摆幅不再受到放大器输入管的限制。从而输出最低电压比稍大,而输出最高电压比稍小。
通过完善,我们利用图2.2(b)所示的电荷泵可以很容易将电流失配降到最小。同时,我们还可以得到最大的输出电压摆幅,从而为满足压控振荡器大的调节范围而不影响电流的失配提供了一个解决方案。
3 仿真结果
图3.1(a)和3.1(b)分别给出了利用不不利用增益提高技术的电荷泵恒流输出电压的仿真结果。结果表示,通过运用增益提高技术,我们几乎可以消除电流失配的不理想性。
4 结语
本文首先研究和分析了电荷泵中存在的几个非常重要的不理想效应。在此基础上,我们又对其中最重要的不理想性做了进一步的研究,并且提出了既能最大程度减小电流失配,同时又能保证最大输出电压摆幅的电荷泵结构。该结构的确表现出了出色的电流失配特性,它可以运用于对电流失配和需要最大频率调节范围的频率综合器中。
[参考文献]
[1] Pavan Kumar Hanumolu,Merrick Brownlee,Kartikeya Mayaram,Un-Ku Moon,“Analysis of Charge-Pump Phase-Locked Loops,”IEEE J.Transactions On Circuits and Systems―I:Regular Papers, Vol.51,No.9,September 2004.
[2] W.Rhee, B.-S.Song,and A. Ali,“A 1.1 GHz CMOS fractional-N frequency synthesizer a 3-bit third-order __ modulator,”IEEE J.Solid- State Circuits,vol.35,no.10,pp.1453~1460,Oct.2000.
[3] H.Arora,N.Klemmer,J.C.Morizio,and P.D.Wolf,“Enhanced phase noise modeling of fractional-N frequency synthesizers,”IEEE J.Trans.Circuits Systems-I,Reg.Papers,vol.52,no.2,pp.379~395, Feb. 2005.
[4] 毕查德 拉杂维.“模拟CMOS集成电路设计”,西安交通大学出版社,西安,2002.12.
[5] Young-Shig Choi and Dae-Hyun Han,“Gain-Boosting Charge Pump for Current Matching in Phase-Locked Loop,” IEEE J.Transactions on Circuits and Systems―II:Express Briefs,Vol.53,No.10, October 2006.
[作者简介]
周叶(1985~),男,江苏常州,硕士研究生。研究方向为模拟集成电路,锁相环(PLL),频率综合器(Frequency Synthesizer)和数据时钟恢复电路(CDR)。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
电荷泵锁相环电路的优点
改进型的CMOS电荷泵锁相环电路_模拟技术2017年04月30日阅读 116本文设计了一种高性能CMOS电荷泵锁相环电路,通过对传统电荷泵电路的改进,提高了充放电电流的匹配性,有效抑制了锁相环输出的相位偏差,提高了环路的稳定性。锁相环(phase-locked loop,PLL)是一个闭环负反馈系统,能够准确地产生一系列与参考频率同相位的频率信号,是现代通信及电子领域中必不可少的系统之一,通常被用于频率合成、同步信号产生、时钟恢复以及时钟产生等。电荷泵锁相环(charge pump phase-locked loop,CPPLL)因其自身所具有的开环增益大、捕获范围宽、捕获速度快、稳定度高和相位误差小等优势,现已广泛应用在无线通信领域中。在整个电荷泵锁相环系统中,电荷泵电路起着非常关键的作用。传统的电荷泵电路,其内部存在的一些非理想因素直接影响着整个环路的工作性能,如存在电荷泄漏、电流失配、电荷共享、时钟馈通等问题,会导致压控振荡器输出频率产生抖动和相位发生偏差。本文首先介绍了锁相环系统的工作原理,其次重点分析了传统电荷泵电路存在的一些不理想因素,并在此基础上,提出了一种改进型的电荷泵电路,减小了锁相环的相位误差。此外,通过设计倍频控制模块,扩大了锁相环的锁频范围。1 系统结构及工作机理电荷泵锁相环通常由鉴频鉴相器(PFD)、电荷泵电路(CP)、低通滤波器(LPF)、压控振荡器(VCO)以及分频器(FD)构成。本文设计的锁相环系统结构如图1所示,环路具体工作原理为:通过检测PFD输入端的参考信号fref与环路反馈信号fdiv的相差和频差,输出相应的电压信号VUP和VDN,来控制CP的工作状态。电荷泵电路将UP和DN信号转换为压控振荡器的控制电压VC输出。VC通过LPF滤除高频分量,输出直流电平,最终作为压控振荡器的控制信号。随着鉴频鉴相器的两路输入信号间的频差与相差不断减小,VC为某一恒定的电压值时,环路达到锁定状态。图1 电荷泵锁相环结构设计时增加了倍频控制(multiple frequencycontrol,MFC)模块,与分频器和压控振荡器配合使用,通过控制位的逻辑输入,一方面可以编程锁频倍数,控制整个环路的倍频数;另一方面可以控制VCO差分延迟单元的跨导,从而改变VCO的电压增益调节其输出范围。图2 给出了图 1电路的线性等效模型。图中:Ip为电荷泵电流;F(s)为滤波器传输函数;KVCO为压控振荡器的增益;N为分频比;φin为输入参考相位;φout为输出相位;φdiv为分频后的反馈相位。图2 电荷泵锁相环线性等效模型可推出整个系统的开环传递函数H(s)为式中s为拉普拉斯变换式中的复变量,滤波器传输函数F(s)可以进一步表示为式中:R,C1和C2分别是图1中相应的电阻和电容值。由式(2)可以看出滤波器传输函数F(s)为二阶线性系统,对于二阶线性系统来说,其传输函数的分母可以表示为ζ2+2ζωn+ωn2,其中ωn是固有频率,ζ是阻尼系数。设计时为了减少环路的抖动,同时保证环路工作的稳定性,一般将环路固有频率ωn设计为参考频率的1/10~1/20,阻尼系数ζ设计为0.3~0.7.2 电荷泵电路设计传统的电荷泵电路如图3所示,电流源Iref通过电流镜像为M2和M7提供与Iref成比例的镜像电流IUP和IDN.PFD的输出逻辑信号VUP和VDN控制开关管M3和M4的导通与关断,M3和M4交替导通给滤波电容CC充放电得到电荷泵输出电压VC.然而,由于MOS器件以及电路结构所具有的一些非理想因素,该电路存在充放电电流失配、电荷共享和时钟馈通等问题。图3 用于锁相环的传统电荷泵电路传统电荷泵电路的充放电电流是由普通电流镜提供的,其中M1和M2构成充电电流镜,M5和M7构成放电电流镜,理想的情况是充放电流能保持一致。然而工作在饱和区的电流镜MOS器件受到沟道长度调制效应的影响,镜像电流会随源漏压差的变化而变化。具体来说,一方面,M6和M7的镜像电流会因它们的漏极电压不同而不同,进而造成电荷泵充放电电流不同;另一方面,VC电压在一定范围内变化时,M2和M7输出的充放电电流也不能保持一致。由于电流失配所造成的相位误差可表示为式中:ICP是设定的电荷泵电流大小;ΔICP为电荷泵的失配电流;Δton是PFD电路产生的导通时间;Tref为基准周期。从上式可以看出,电流失配值对相位误差的影响是成正比关系的,因此,消除电荷泵电路中的电流失配就显得尤为重要。在电荷泵充放电周期中还存在电荷共享和时钟馈通现象的影响。在充电时M3导通,M2的漏端电压降低到VC值,同时M4关断,M7的漏端电压降低到零;在放电时M3关断,M2的漏端电压升高到VDD值,同时M4导通,M7的漏端电压升高到VC值。由于M2和M7的漏极存在寄生电容,其在充放电周期中就会吸收和释放电荷,因此会影响电荷泵的输出,这一现象称为电荷共享。另外,在充放电周期中,M3和M4栅极寄生电容在时钟信号的驱动下也会产生电荷的释放和吸收现象,从而影响电荷泵输出,这一现象又称为时钟馈通。针对传统电荷泵电路中存在的电流失配、电荷共享和时钟馈通的问题,本文提出了一种改进型的电荷泵电路,如图4所示。图4 用于锁相环的改进型电荷泵电路如图4所示,首先为了抑制开关管时钟馈通现象,将开关管M8和M2与电流镜管M6和M4的位置进行交换,这样可以有效降低开关管漏极电压的变化幅度。同时,增加了开关管M1,M7和M9来分别匹配M2,M8和M10,以消除电流镜像的误差。此外,增加的开关管M11和M12分别与M8和M2反相导通,这样就可以抵消时钟馈通和电荷共享现象产生的电荷。针对电流镜失配的问题,采用了负反馈的方式来抑制充放电电流镜的失配。具体做法是,M5,M6和M10构成电流镜将基准电流Iref镜像后由M6输出电荷泵的充电电流。M5的漏极电流流过M3,然后M3与M4构成的电流镜由M4输出电荷泵的放电电流。放大器OP的引入,在VX节点形成负反馈,就可以严格保证VX=VC,这样几乎完全消除了电流镜漏极电压的不同带来的充放电电流失配问题。另外,开关管M11和M12的漏极连接到了VX节点,因为VX=VC,所以M11和M12的漏极电压也等于VC,这样做既匹配了时钟馈通和电荷共享现象产生的电荷,又避免了M11和M12的漏极直接连接到VC对电荷泵输出的影响。放大器OP采用了轨对轨结构,以保证输入和输出电压的摆幅范围,以增大电荷泵输出电压的线性范围。电容C1的引入,既具有稳定负反馈环路的作用,又起到滤波VX电压毛刺干扰的作用。3 其他模块电路设计3.1压控振荡器由于折叠式差分环形压控振荡器的电路结构简单、控制线性度好和噪声小,所以本次设计的压控振荡器采用四级差分延时结构来实现,电路结构如图5所示。图5 压控振荡器电路压控振荡器差分延时单元如图6所示。延迟单元的线性度和延迟时间范围决定了压控振荡器的线性度和频率范围。为了最大化利用电荷泵输出电压的范围,以提高锁相环的噪声抑制能力,在压控振荡器延迟单元设计上采用了分段线性的方式,将延迟时间分成三段控制。控制电压VC分别控制MOS管M7,M8和M9的栅极电压,以形成3路不同电流来控制延迟单元的线性范围。其中M10,M11和M12作为开关管由图1中的MFC单元产生逻辑信号进行控制,根据频率范围的不同选择其中一路的电流路径。为了改善受控电流随控制电压VC的线性度,为M7,M8和M9增加了源极负反馈电阻,经验证优化的阻值分别为0.4,5和50kΩ。另外,为了提高压控振荡器的工作频率,增加了M7的管子个数,设计中选取M7的管子个数是M8和M9的4倍。此外,延迟单元的最后一级增加了一缓冲级,将双端输出转换为单端输出。3.2鉴频鉴相器鉴频鉴相器电路如图7所示,它由两个带复位功能的D触发器构成,设计时在信号路径上增加了传输门单元,用来匹配UP和DN控制信号之间的延迟。电路采用高电平实现复位,鉴相范围为-2π~2π。通过改变反相器的尺寸,可以调节复位脉冲延时宽度,消除鉴相死区,提高鉴相精度。图6 压控振荡器差分延迟单元图7 鉴频鉴相电路4 结果分析本文提出的电荷泵锁相环电路基于 Dongbu HiTek 0.18 μm CMOS工艺设计,采用Hspice模型进行了详细的仿真验证。图8是典型模型下电荷泵充放电电流匹配性仿真结果,仿真结果表明,输出电压在0.25~1.5 V变化时,电荷泵的充放电电流一致性保持很好。表1给出了在不同工艺角、不同输出电压下,电荷泵充放电电流的相对失配量(或相对误差δi,用百分比表示),由表1的数据可以看出,本文改进的电荷泵电路有效抑制了充放电电流的失配。图8 电荷泵电流匹配性仿真结果表1 不同工艺角下电荷泵充放电电流的相对失配量(δi)图9给出了压控振荡器的控制电压与输出频率关系的仿真结果,从图中可以看出,按照输出频率的不同,延迟单元产生的三段不同的线性度,分别对应图6中的接0.4,5和50 kΩ电阻的电流路径。该线性范围大致可以分为:25~120 MHz为第一段;120~650 MHz为第二段;650 MHz~2.2 GHz为第三段。第一和第二阶段的线性范围较宽,而第三阶段进入高频后线性范围有所下降,但总体来看所采用的分段线性控制实现了较好的效果。图9 压控振荡器的控制电压与输出频率关系曲线图10给出了锁相环建立过程的仿真波形,图中给出的是VCO控制电压的波形,在输入参考频率为31.5 MHz、频率反馈设置为32分频时,系统锁定时间约为1.5μs。MFC模块的采用和压控振荡器分段线性的处理有效扩展了锁频范围,输出频率在25 MHz~2.2 GHz内可调。在实际应用中,可以通过选择常用晶振频率和整数分频倍数获得更多的输出频率。图11和图12分别给出了输出频率在100 MHz~2.2 GHz变化时,锁相环的捕获时间tcap和稳态相对相位误差δp的变化曲线。结果表明,在100MHz~2.2GHz的输出频率范围内,锁相环的捕获时间小于2μs,相位相位误差小于0.6%.图10 锁相环建立过程的瞬态仿真波形图11 捕获时间(tcap)与输出频率的对应关系曲线图12 稳态相对相位误差(δp)与输出频率的对应关系曲线5结语设计了一种宽频率范围的CMOS锁相环(PLL)电路,通过提高电荷泵电路的电流镜镜像精度和增加开关噪声抵消电路,有效地改善了传统电路中由于电流失配、电荷共享、时钟馈通等导致的相位偏差问题。另外,设计了一种倍频控制单元,通过编程锁频倍数和压控振荡器延迟单元的跨导,有效扩展了锁相环的锁频范围。该电路基于Dongbu HiTek 0.18μm CMOS工艺设计,仿真结果表明,在1.8 V的工作电压下,电荷泵电路输出电压在0.25~1.5 V变化时,电荷泵的充放电电流一致性保持很好,在100 MHz~2.2 GHz的输出频率内,频率捕获时间小于2μs,稳态相对相位误差小于0.6%.在环路中增加了倍频控制模块MFC和压控振荡器分段处理,有效扩展了锁频范围。该电路基于Dongbu HiTek 0.18μm CMOS工艺设计,并进行了全面的仿真验证,结果表明:输出频率在100 MHz~2.2 GHz内变化时,频率锁定时间和相位误差都得到了有效控制,验证了设计的有效性。