牛顿迭代法公式
牛顿迭代法公式:gcd(a,b)=gcd(b,amodb),迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。
迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
牛顿迭代法公式
牛顿迭代法公式:1x(n+1)=x(n)-f(x(n))/f'(x(0))。牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可解,从而寻找方程的近似根就显得特别重要。牛顿迭代法是求方程根的重要方法之一,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
关于牛顿迭代法的收敛阶数
牛顿迭代法的收敛阶数通过一定的迭代公式得到x(k+1)=g(xk),若记ek=|xk-x*|,其中x*是f(x)=0的根。ek就是度量迭代序列{xk}与真解之间的距离,ek=0表示已经得到真解。 f(x)满足一定的条件,则{xk}二次收敛到x*,大致上说就是ek约为e(k-1)^2,这是一个收敛很快的方法。因为你想,比如e1=0.1,则e2约为0.01,e3约为10^(-4),e4约为10^(-8),e5约为10^(-16),只需几步迭代就能得到解的一个有效位数大约是16位的近似解,收敛很快的。牛顿迭代法公式:k=(G+G动)/n。牛顿迭代法(Newton'smethod)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphsonmethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
如何判别牛顿迭代法收敛性?
在满足以下条件时,牛顿迭代法是二阶收敛的:①f(a)*f(b)<0;②f'(x)≠0,x∈[a,b];③f''(x)在[a,b]上不变号;④f-f(a)/f(b)≤b,b-f(b)/f'(b)≥a.而考虑牛顿迭代法的局部收敛性,牛顿可以具有二阶以上的阶数定理一:设函数f(x)在邻域U(x*)内存在至少二阶连续导数,x*是方程f(x)的单根,则当初始值x0充分接近方程f(x)的根x*时,牛顿迭代法至少局部二阶收敛;定理二:设x*是方程f(x)=0的r重根,这里r≥2,且函数f(x)在邻域U(x*)内存在至少二阶连续导数,则牛顿迭代法局部线性收敛。求方程的复根时,牛顿迭代发具有局部线性收敛速度,因此可以改进牛顿迭代发,使其在求复根时具有更高阶的收敛速度。