电脑硬件品牌有那些?
CPU只有两个:英特尔、AMD。
主板:华硕、技嘉、微星、映泰。
显卡:蓝宝石、迪兰恒进、索泰、微星、华硕。
散热器:思民、超频三、酷冷至尊、九州风神。
内存:金士顿、威刚、宇瞻、南亚易胜。
硬盘:希捷、西数、日立、三星。
电源:安泰克、台达、海韵、振华。
机箱:技展、超频三、TT、金河田。
显示器:飞利浦、三星、AOC、戴尔。
鼠标键盘:罗技、双飞燕、现代。
音箱:漫步者、三诺、现代、山水。
银牌师★软硬兼施★ 为您解答
软件和硬件的区别?
硬件和软件的区别:一、软件是一种逻辑的产品,与硬件产品有本质的区别硬件是看得见、摸得着的物理部件或设备。在研制硬件产品时,人的创造性活动表现在把原材料转变成有形的物理产品。而软件产品是以程序和文档的形式存在,通过在计算机上运行来体现他的作用。在研制软件产品的过程中,人们的生产活动表现在要创造性地抽象出问题的求解模型,然后根据求解模型写出程序,最后经过调试、运行程序得到求解问题的结果。整个生产、开发过程是在无形化方式下完成的,其能见度极差,这给软件开发、生产过程的管理带来了极大的困难。二、软件产品质量的体现方式与硬件产品不同质量体现方式不同表现在两个方面。硬件产品设计定型后可以批量生产,产品质量通过质量检测体系可以得到保障。但是生产、加工过程一旦失误。硬件产品可能就会因为质量问题而报废。而软件产品不能用传统意义上的制造进行生产,就目前软件开发技术而言,软件生产还是“定制”的,只能针对特定问题进行设计或实现。但是软件爱你产品一旦实现后,其生产过程只是复制而已,而复制生产出来的软件质量是相同的。设计出来的软件即使出现质量问题,产品也不会报废,通过修改、测试,还可以将“报废”的软件“修复”,投入正常运行。可见软件的质量保证机制比硬件具有更大的灵活性。三、软件产品的成本构成与硬件产品不同硬件产品的成本构成中有形的物质占了相当大的比重。就硬件产品生存周期而言,成本构成中设计、生产环节占绝大部分,而售后服务只占少部分。软件生产主要靠脑力劳动。软件产品的成本构成中人力资源占了相当大的比重。软件产品的生产成本主要在开发和研制。研制成功后,产品生产就简单了,通过复制就能批量生产。四、软件产品的失败曲线与硬件产品不同硬件产品存在老化和折旧问题。当一个硬件部件磨损时可以用一个新部件去替换他。硬件会因为主要部件的磨损而最终被淘汰。对于软件而言,不存在折旧和磨损问题,如果需要的话可以永远使用下去。但是软件故障的排除要比硬件故障的排除复杂得多。软件故障主要是因为软件设计或编码的错误所致,必须重新设计和编码才能解决问题。软件在其开发初始阶段在很高的失败率,这主要是由于需求分析不切合实际或设计错误等引起的。当开发过程中的错误被纠正后,其失败率便下降到一定水平并保持相对稳定,直到该软件被废弃不用。在软件进行大的改动时,也会导致失败率急剧上升。五、大多数软件仍然是定制产生的硬件产品一旦设计定型,其生产技术、加工工艺和流程管理也就确定下来,这样便于实现硬件产品的标准化、系列化成批生产。由于硬件产品具有标准的框架和接口,不论哪个厂家的产品,用户买来都可以集成、组装和替换使用。尽管软件产品复用是软件界孜孜不倦追求的目标,在某些局部范围内几家领军软件企业也建立了一些软件组件复用的技术标准。例如,OMG的CORBA,mICROSOFT的COM,sun的J2EE等,但是目前还做不到大范围使用软件替代品。大多数软件任然是为特定任务或用户定制的。扩展资料:硬件:计算机的硬件是计算机系统中各种设备的总称。计算机的硬件应包括5个基本部分,即运算器、控制器、存储器、输入设备、输出设备,上述各基本部件的功能各异。运算器应能进行加、减、乘、除等基本运算。存储器不仅能存放数据,而且也能存放指令,计算机应能区分是数据还是指令。控制器应能自动执行指令。操作人员可以通过输人、输出设备与主机进行通信。计算机内部采用二进制来表示指令和数据。操作人员将编好的程序和原始数据送人主存储器中,然后启动计算机工作,计算机应在不需干预的情况下启动完成逐条取出指令和执行指令的任务。软件:电脑的外观、主机内的元件都是看得见的东西,一般称它们为电脑的「硬件」,那么电脑的「软件」是什么呢?即使打开主机,也看不到软件在哪里。既看不见也摸不到,听起来好像很抽象,但是,如果没有软件,就像植物人一样,空有躯体却无法行动。当你启动电脑时,电脑会执行开机程序,并且启动系统」,然后你会启动「Word」程序,并且打开「文件」来编辑文件,或是使用「Excel」来制作报表,和使用「IE」来上网等等,以上所提到的操作系统、打开的程序和文件,都属于电脑的「软件」。软件包括:1、应用软件:应用程序包,面向问题的程序设计语言等2、系统软件:操作系统,语言编译解释系统服务性程序硬件与软件的关系:硬件和软件是一个完整的计算机系统互相依存的两大部分,它们的关系主要体现在以下几个方面。1、硬件和软件互相依存硬件是软件赖以工作的物质基础,软件的正常工作是硬件发挥作用的唯一途径。计算机系统必须要配备完善的软件系统才能正常工作,且充分发挥其硬件的各种功能。2、硬件和软件无严格界线随着计算机技术的发展,在许多情况下,计算机的某些功能既可以由硬件实现,也可以由软件来实现。因此,硬件与软件在一定意义上说没有绝对严格的界面。3、硬件和软件协同发展计算机软件随硬件技术的迅速发展而发展,而软件的不断发展与完善又促进硬件的更新,两者密切地交织发展,缺一不可。参考资料:软件-百度百科硬件-百度百科
会发出荧光的叶绿素你见过么(二)
接下来我们接着上一篇的内容继续讲解。大家都听过光合作用,植物进行光合作用才能够产生氧气,那么对于光合作用的知识你了解多少呢?什么是光合作用?光合作用需要哪些条件?光合作用在哪里进行?只有植物可以进行光合作用吗?这些都是平常大家问我的问题。自然-化学》杂志刊登了一项新的研究。科学家发现参与光合作用的分子能像非生命物质那样,表现出相同的量子效应 。 尽管在此之前,就有研究指出,量子相干性在光合作用的能量传输过程中扮演着重要作用。但这次是科学家 第一次在涉及到光合作用的生命系统中证实了量子效应的存在 。该研究不仅能帮助我们更好地理解植物、阳光以及与其相关的许多事物,还可能为我们带来酷炫的新技术。接下来就让恐龙哥哥为你解读一下。 光合作用(Photosynthesis)是绿色植物、和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物(主要是淀粉),并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是他们赖以生存的关键,而地球上的碳氧循环,光合作用是必不可少的。 光合作用文字方程序: 二氧化碳+水+光能->淀粉+氧气 植物与动物不同。对于绿色植物来说,在阳光充足的白天,将利用阳光的能量来进行光合作用,以获得生长发育必需的养分,就是所谓的自 养生 物。 这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放出氧气: 12H2O + 6CO2 +阳光→ (与叶绿素产生化学作用)C6H12O6 (葡萄糖) + 6O2 + 6H2O 注意:上式中等号两边的水不能抵消,虽然在化学上式子显得很特别。原因是左边的水,是植物吸收所得,而且用于制造氧气和提供电子和氢离子。而右边的水分子的氧原子则是来自二氧化碳。为了更清楚地表达这一原料产物起始过程,人们更习惯在等号左右两边都写上水分子,或者在右边的水分子右上角打上星号。 植物的光合作用可分为光反应和碳反应两个步骤如下: 12H2O +阳光→ 12H2 + 6O2 [光反应] 12H2 (来自光反应) + 6CO2 → C6H12O6 (葡萄糖) + 6H2O [碳反应] 我们在显微镜下观察到是叶绿素分子吸收光能从基态变为激发态,这个过程是吸收光能,如果从激发态变为基态就是释放能量,在我们的能量跃迁图里面曾经讲到过。 叶绿素吸收光能后,会从基态到激发态,然而激发态不稳定,能量就要释放,释放途径有三种:1 荧光;2 热散失;3 光化学(就是将二氧化碳变为葡萄糖),但是这三种途径发生的速率不同,荧光是纳秒级别,光化学是ps级别(1000ps=1纳秒),然而反应越快,自然反应所占比重也就越多,所以荧光一般只占总量的0.5%左右,但是不同情况下,其各自的比重也会有所变化,当转换为葡萄糖的途径受阻后,荧光的部分自然就多了。所以我们的提取液中,荧光现象也就越明显了。 细胞内的叶绿素分子通过直接吸收光量子或间接通过捕光色素吸收光量子得到能量后,从基态(低能态)跃迁到激发态(高能态)。由于波长越短能量越高,故叶绿素分子吸收红光后,电子跃迁到最低激发态;吸收蓝光后,电子跃迁到比吸收红光更高的能级(较高激发态)。处于较高激发态的叶绿素分子很不稳定,在几百飞秒(fs,1 fs=10-15 s)内,通过振动弛豫向周围环境辐射热量,回到最低激发态。最低激发态的叶绿素分子可以稳定存在几纳秒(ns,1 ns=10-9 s)。 处于较低激发态的叶绿素分子可以通过几种途径释放能量回到稳定的基态。能量的释放方式有如下几种: 1.重新放出一个光子,回到基态,即产生荧光。由于部分激发能在放出荧光光子之前以热的形式逸散掉了,因此荧光的波长比吸收光的波长长,叶绿素荧光一般位于红光区。2,不放出光子,直接以热的形式耗散掉(非辐射能量耗散)。 3,将能量从一个叶绿素分子传递到邻近的另一个叶绿素分子,能量在一系列叶绿素分子之间传递,最后到达反应中心,反应中心叶绿素分子通过电荷分离将能量传递给电子受体,从而进行光化学反应。以上这3个过程是相互竞争的,往往是具有最大速率的过程处于支配地位。对许多色素分子来说,荧光发生在纳秒级,而光化学发生在ps级,因此当光合生物处于正常的生理状态时,天线色素吸收的光能绝大部分用来进行光化学反应,荧光只占很小的一部分。 简单来说就是:可以通过检测叶绿素荧光来反应光合作用过程中的其它反应进行的程度。 叶绿素荧光,作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,因此通过研究叶绿素荧光来间接研究光合作用的变化是一种简便、快捷、可靠的方法。目前,叶绿素荧光在光合作用、植物胁迫生理学、水生生物学、海洋学和遥感等方面得到了广泛的应用。 关于叶绿素荧光的作用这里讲解两个:1 植物光合作用强度,依次可以利用荧光的强弱,研究同一植物在缺水,多雨,盐碱等不同环境下的光合作用,依次判断植物的生长习性等;2 遥感遥测,可以利用卫星的遥感测试不同地区,植物的光合作用,依次推断各个地区植物的生长状况。
什么是叶绿素的荧光现象?
叶绿素的荧光现象与磷光现象
(1) 荧光现象:是指叶绿素在透射光下为绿色,而在反射光下为红色的现象,这红光就是叶绿素受光激发后发射的荧光.叶绿素溶液的荧光可达吸收光的10%左右.而鲜叶的荧光程度较低,指占其吸收光的0.1%左右.
(2) 磷光现象:叶绿素除了照光时间能辐射出荧光外,去掉光源后仍能辐射出微弱红光,既为磷光.
谈叶绿素的荧光现象
不少教师认为:观察叶绿素提取液时,对着光源将看到试管内提取液呈(红)色;背着光源将看到试管内提取液呈(绿)色.原因是叶绿素对绿光吸收的量最少,故绿光被反射回来,背对光源看起来就呈绿色.对红光吸收的量最多,正对光源看起来就呈红色.
对此我们做了以下实验:
1.称取5g去除大叶脉的新鲜青菜叶子,放入洁净的研钵内,加入少量的石英砂和碳酸钙,加丙酮5ml,研磨成匀浆,再加丙酮15ml,用漏斗过滤,即得深绿色的叶绿素提取液.
2.取上述色素丙酮提取液少许放入试管,对着光源观察,看到试管内色素提取液呈绿色;背着光源观察,看到试管内色素提取液呈血红色.用丙酮稀释一倍后,对着光观察,看到试管内色素提取液呈浅绿色;背着光源观察,看到试管内色素提取液呈肉红色.
3.首先调节分光计,观察灯光的光谱.观察到连续光谱.
再取上述色素丙酮提取液少许,用丙酮稀释1倍,观察其吸收光谱.观察结果为:红光和蓝紫光部分出现明显的吸收带.而在光谱的橙光、黄光和绿光部分只有不明显的吸收带,尤其绿光部分吸收最少.
实验分析:(1)对着光源观察叶绿素提取液时,看到的是叶绿素的吸收光谱.由于叶绿素提取液吸收的绿光部分最少,故用肉眼观察到的为绿色透射光.(2)背光源观察叶绿素提取液时,看到的是叶绿素分子受激发后所产生的发射光谱.当叶绿素分子吸收光子后,就由最稳定的、能量最低的基态提高到一个不稳定的、高能量的激发态.由于激发态不稳定,因此发射光波(此光波即为荧光),消失能量,迅速由激发态回到基态.叶绿素分子吸收的光能有一部分用于分子内部振动上,辐射出的能量就小.由“光子说”可知,光是以一份一份光子的形式不连续传播的,而且E=hv=hc/λ,即波长与光子能量成反比.因此,反射出的光波波长比入射光波的波长长,叶绿素提取液在反射光下呈红色.叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象叫做荧光现象.
由实验现象及观察结果得出结论:观察叶绿素提取液时,对着光源将看到试管内提取液呈绿色;背着光源将看到试管内提取液呈红色.