模拟退火算法

时间:2024-03-23 14:23:11编辑:奇事君

模拟退火算法是模拟什么的过程

模拟退火算法是模拟固体物理学中退火过程的优化算法。在固体物理学中,当将物质加热到足够高的温度时,其原子排列随温度升高呈现出随机性,称为液态状态。然而,当物质温度下降时,原子将重新排列并自组装成为晶体结构,热力学的平衡状态。因此,退火过程涵盖了从高温液态状态到低温晶体结构的过程,搜索算法的目标就是通过模拟退火过程中的温度变化和随温度下降的能量减少来找到最优解。模拟退火算法的核心思想是在一定的温度下随机扰动原有解,以达到克服局部最优解,进而找到全局最优解。因此,模拟退火算法也被称为一种全局搜索算法。

模拟退火算法是不是被淘汰了

模拟退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
3.5.1 模拟退火算法的模型
模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:
模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。


模拟退火算法原理

模拟退火算法原理如下:模拟退火(Simulated Annealing, SA)算法是对热力学中退火过程的模仿。将金属加热到高温,此时金属内部分子热运动非常剧烈,内部的分子结构会出现很大变化;之后让它缓慢降低温度,随着温度的降低,分子热运动的剧烈程度逐渐减弱,内部分子结构变化较小,逐渐趋于稳定。在寻找问题的最优解时,我们可以先给定一个初始解。此时温度较高,初始解有很大的概率发生变化,产生一个新的解;随着温度的降低,解发生变化的概率逐渐减小。假定我们需要求解一个函数f(x)的最小值,那么模拟退火算法的过程描述如下:产生新解的方式很多,以二进制编码为例,假如一个解为01001101,可以随机选取一位进行取反。假如选中了第3位,则第3位按位取反,新解为01101101。这个过程有点类似于遗传算法中的基因突变。上述算法描述中每个温度值只产生了一次新解,实际问题中可以产生多次。算法的关键在于Metropolis准则。如果新解的函数值较小,自然要把新解作为当前解;如果新解函数值较大,则它仍有一定概率被选作当前解。这个概率与df有关,df越大,说明新解越差,它被选作当前解的概率也越小;此外,这个概率还和当前温度有关,当前温度越高,概率越大(类似于分子热运动越剧烈)。

上一篇:共享资源

下一篇:路径