滤除图像中的椒盐噪声采用中值滤波还是邻域均值滤波,为什么
均值滤波器是一种最常用的线性低通平滑滤波器,可抑制图像中的加性噪声,但同时也使图像变得模糊;中值滤波器是一种最常用的非线性平滑滤波器,可消除图像中孤立的噪声点,又可产生较少的模糊。一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。因此,滤除图像中的椒盐噪声采用中值滤波。
用matlab,选一幅图像,加入椒盐噪声后,对其进行中值滤波和均值滤波,对比其效果。
%%中值I=imread('lena.bmp'); %读原图J1=imnoise(I,'salt & pepper',0.02); %加均值为0,方差为0.02的椒盐噪声J2=imnoise(I,'gaussian',0.02); %加均值为0,方差为0.02的高斯噪声。subplot(2,2,1),imshow(J1); %显示有椒盐噪声图像subplot(2,2,2),imshow(J2); %显示有高斯噪声图像I1= medfilt2(J1,[5,5]); %对有椒盐噪声图像进行5×5方形窗口中值滤波I2= medfilt2(J2,[5,5]); %对有高斯噪声图像进行5×5方形窗口中值滤波subplot(2,2,3),imshow(I1); %显示有椒盐噪声图像的滤波结果subplot(2,2,4),imshow(I2); %显示有高斯噪声图像的滤波结果 %%均衡I=imread('lena.bmp'); %将图读入到Iimshow(I); %显示图像figure,imhist(I); %直方图I2=histeq(I); %均衡化figure;imshow(I2); %处理后图像显示figure;imhist(I2); %均衡化后直方图imwrite(I2,'lena2.bmp'); %保存图像
用中值滤波器对椒盐噪声的消除@matlab。。说说具体步骤例子,,,,谢谢@各路大神
图像降噪是图像处理中的专业术语。在现实生活中,我们看到的数字图像,在数字化和传输过程中由于常受到成像设备与外部环境噪声干扰等影响,把这些图像称为含噪图像或者叫噪声图像。减少数字图像中噪声的过程称为图像降噪,有时候又称为图像去噪。
图像滤波就是在尽量保留图像细节特征的条件下,对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
图像滤波是图像降噪的方法,图像降噪有很多方法,主要有:
1、均值滤波器
此法适用于去除通过扫描得到的图象中的颗粒噪声。
领域平均法能够有力地抑制噪声,同时也由于平均而引起了模糊现象,模糊程度与邻域半径成正比。几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图象细节。谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。它善于处理像高斯噪声那样的其他噪声。逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。
2、自适应维纳滤波器
它能根据图象的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f^(x,y)与原始图像f(x,y)的均方误差e2=E[(f(x,y)-f^(x,y)2]最小。该方法的滤波效果比均值滤波器效果要好,对保留图像的边缘和其他高频部分很有用,不过计算量较大。维纳滤波器对具有白噪声的图象滤波效果最佳。
3、中值滤波器
它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换。其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点。所以中值滤波对于滤除图像的椒盐噪声非常有效。
4、形态学噪声滤除器
此方法适用的图像类型是图象中的对象尺寸都比较大,且没有细小的细节。它将开启和闭合结合起来来滤除噪声,先对有噪声图象进行开启操作,可选择结构要素矩阵比噪声的尺寸大,因而开启的结果是将背景上的噪声去除。最后是对前一步得到的图象进行闭合操作,将图象上的噪声去掉。
5、小波去噪
这种方法保留了大部分包含信号的小波系数,因此可以较好地保持图象细节。小波分析进行图像去噪主要有3个步骤:(1)对图象信号进行小波分解。(2)对经过层次分解后的高频系数进行阈值量化。(3)利用二维小波重构图象信号。
如何用MATLAB给图片加椒盐噪声和滤噪?
1、打开Matlab,点击“新建脚本”,如下图所示。2、在代码编辑区输入代码,先利用Imread函数读取图像,然后使用Imshow函数将图像展示出来,以便与添加噪声后的图像做对比。3、Matlab中利用imnoise函数可以添加各种噪声,而使用“gaussian”参数就可以添加高斯噪声。4、选择保存位置,并为m文件重命名,如下图所示所示,设置完成,点击“保存”。5、这样,就在Matlab中为图像添加了高斯噪声,并且把一组对比图显示在同一个窗口中,如下图所示。
求:盐噪声,椒噪声和椒盐噪声标准定义!
椒=黑色,盐=白色;图像双极型噪声(bipolar),数学定义为p(y)={alpha,y=x时;beta,y=a时;gama,y=b时。},其中x为原始图像像素,椒盐噪声记为z,y为被污染的噪声,此处alpha+beta+gama=1,对受椒盐噪声污染的图像进行统计描述,出现椒盐噪声的像素,带噪声的图像像素只会出现两种取值:a或b。来自《数字图像处理》王桥,科学出版社。