什么是二项分布
二项分布是一种具有广泛用途的离散型随机变量的概率分布。它是由贝努里始创的,所以又叫贝努里分布。二项分布是指统计变量中只有性质不同的两项群体的概率分布。所谓两项群体是按两种不同性质划分的统计变量,是二项试验的结果。即各个变量都可归为两个不同性质中的一个,两个观测值是对立的。因而两项分布又可说是两个对立事件的概率分布。二项分布的性质:二项分布是离散型分布,概率直方图是跃阶式的。因为x为不连续变量,用概率条图表示更合适,用直方图表示只是为了更形象些。1、当p=q时图形是对称的例2 (p + q)6,p=q=1/2,各项的概率可写作:p6 + 6p5q + 15p4q2 + 20p3q3 + 15p2q4 + 6plq5 + q6= 1/64+6/64+15/64+20/64+15/64+6/64+1/64= 12、当p≠q时,直方图呈偏态,pq的偏斜方向相反。如果n很大,即使p≠q,偏态逐渐降低,最终成正态分布,二项分布的极限分布为正态分布。故当n很大时,二项分布的概率可用正态分布的概率作为近似值。何谓n很大呢?一般规定:当pq且nq≥5,这时的n就被认为很大,可以用正态分布的概率作为近似值了。
二项分布是什么意思
二项分布意思如下:统计学定义:二项分布是n个独立的成功或者失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这种单次成功或者失败试验被称为伯努利试验,而当n=1时,二项分布就是伯努利分布。二项分布是显著性差异的二项试验的基础,可以帮助我们了解和监控生产实践过程中由于某些因素而导致的波动。医学定义:在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。综上:考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行n次伯努利试验,取得成功次数为X(X=0,1,2,3……,n)的概率可用下面的二项分布概率公式来描述:P=C(X,n)*π^X*(1-π)^(n-X)。式中的n为独立的伯努利试验次数,π为成功的概率,(1-π)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数(binomial coefficient)。所以的含义为:含量为n的样本中,恰好有X例阳性数的概率。
二项分布定义
在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为P。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,...,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。 在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单词成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布 一般地,如果随机变量X服从参数为n和p的二项分布,我们记为X~B(n,p)或X~b(n,p)。n次试验中正好得到k次成功的概率由概率质量函数给出: 二项分布,其英文名为Binomial Distribution,提出者是伯努利,应用学科为统计学。