kruskal算法是什么呢?
kruskal算法是求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n个点)所使用的贪心准则是:从剩下的边中选择一条不会产生环路的具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。kruskal算法分e步,其中e是网络中边的数目。按耗费递增的顺序来考虑这e 条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。Kruskal算法基本思想:每次选不属于同一连通分量(保证不生成圈)且边权值最小的顶点,将边加入MST,并将所在的2个连通分量合并,直到只剩一个连通分量。排序使用Quicksort(O(eloge))。检查是否在同一连通分量用Union-Find,每次Find和union运算近似常数。Union-Find使用rank启发式合并和路径压缩。总复杂度O(eloge)=O(elogv) (因为e<n(n-1)/2)。
克鲁斯卡尔时间复杂度怎么算出来的
Kruskal算法的时间复杂度由排序算法决定,若采用快排则时间复杂度为O(N log N)。
kruskal算法:
求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n个点)所使用的贪婪准则是:从剩下的边中选择一条不会产生环路的
具有最小耗费的边加入已选择的边的集合中。注意到所选取的边若产生环路则不可能形成一棵生成树。kruskal算法分e 步,其中e
是网络中边的数目。按耗费递增的顺序来考虑这e
条边,每次考虑一条边。当考虑某条边时,若将其加入到已选边的集合中会出现环路,则将其抛弃,否则,将它选入。
假设WN=(V,{E})是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的
过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n
棵树的一个森林。之后,从网的边集 E
中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶
点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
kruskal算法是什么?
kruskal算法是:克鲁斯卡尔算法。是求连通网的最小生成树的另一种方法。与普里姆算法不同,它的时间复杂度为O(eloge)、(e为网中的边数),所以,适合于求边稀疏的网的最小生成树。克鲁斯卡尔(Kruskal)算法从另一途径求网的最小生成树。其基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),概述图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点分别在T中不同的连通分量上,则将此边加入到T中;否则,舍去此边而选择下一条代价最小的边。依此类推,直至T中所有顶点构成一个连通分量为止。复杂度:克鲁斯卡尔算法的时间复杂度主要由排序方法决定,而克鲁斯卡尔算法的排序方法只与网中边的条数有关,而与网中顶点的个数无关,当使用时间复杂度为O(elog2e)的排序方法时,克鲁斯卡尔算法的时间复杂度即为O(log2e),因此当网的顶点个数较多、而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果较好。
克鲁斯卡尔算法介绍
1、克鲁斯卡尔算法是求连通网的最小生成树的另一种方法。与普里姆算法不同,它的时间复杂度为O(eloge)(e为网中的边数),所以,适合于求边稀疏的网的最小生成树。
2、克鲁斯卡尔(Kruskal)算法从另一途径求网的最小生成树。其基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点分别在T中不同的连通分量上,则将此边加入到T中;否则,舍去此边而选择下一条代价最小的边。依此类推,直至T中所有顶点构成一个连通分量为止 。