红外光谱原理是什么?
红外光谱原理是红外光谱是一种分子吸收光谱,利用红外光谱法对有机物进行定性和定量的检测,通过红外线光谱仪发出红外线光线,再将光线照射到待检测物体的表面,有机物因其吸收特性会吸收红外光,从而产生红外光谱图。技术人员可根据红外光谱图找到与吸收峰相对应的化学基团数据库,对待测物质的构成和所属状态进行定性分析。红外光谱的分类红外光谱可分为近红外光谱技术、远红外光谱技术和傅立叶变换红外光谱技术。近红外光谱技术的分子中存在4种不同形式的能量,分别是平动能,转运能,振动能和电子能。在近红外光谱技术中,近红外区域产生的倍频和合频的吸收往往比中红外弱,背景十分复杂,谱峰重叠的现象十分严重,有时必须借助化学计量方法才能提供有效的信息。远红外光谱技术是利用物体在远红外区的吸收光谱,这个区域的光源能量十分弱小,吸收谱带主要是气体分子中的纯转动跃迁和液体中重原子的伸缩振动,因此一般不在远红外光谱区进行定量分析。傅立叶变换红外光谱技术是一种快速,无损食品分析的检测技术,主要通过与化学计量学的方法相结合,实现定性定量分析。
傅里叶变换红外光谱仪是基于什么原理进行分光的
傅里叶变换红外光谱仪是基于什么原理进行分光的如下:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。红外分光光度计和傅里叶红外光谱仪之间的区别如下:一、原理不同1、红外分光光度计:由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被扇形镜以一定的频率所调制,形成交变信号,然后两束光和为一束,并交替通过入射狭缝进入单色器中。2、傅里叶红外光谱仪:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。二、构成不同1、红外分光光度计:探测器将上述交变的信号转换为相应的电信号,经放大器进行电压放大后,转入A/D转换单位,计算机处理后得到从高波数到低波数的红外吸收光谱图。2、傅里叶红外光谱仪:由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。三、应用不同1、红外分光光度计:可广泛地应用在石油、化工、医药、环保、教学、材料科学、公安、国防等领域。2、傅里叶红外光谱仪:广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
红外光谱主要有哪些方面的应用
红外光谱主要有一下方面的应用:表面化学研究中的应用,继续不断地开发表面与薄膜的原位和实时红外分析技术。根据报道已有一种适用于原位和同时红外分析的FT-IR扩散反射室。在石油化学研究中的应用傅立叶变换红外光谱仪在石油化学中的应用是一个十分广泛的领域,如在重油的组成、性质与加工方面,应用IR表面自硅胶色谱得到的胶质和沥青质。红外光谱仪在润滑油及其应用方面的进展体现在用于鉴别未知油品和标定润滑油的经典物理性质如粘度、总酸值、总碱值,被纳入以设备状态监测为目的的油液分析计划,用于表征在用油液的降解和污染程度,油润滑 表面摩擦化学过程及产物的原位监测与表征。在催化化学研究中的应用扩散反射红外光谱傅立叶变换光谱的应用报道特别突出其次是IRASDRIFTS用于监控催化剂表面吸附化合物的分解动力学。IRAS的典型应用实例包括研究CO在Pd催化剂表面的氧化反应动力学。以及研究NOCO在Pd和Pd-SiO2表面的共吸附现象。在半导体和超导材料等方面的应用。在此方面的应用主要有,分析铀原子与CO和CO2,反应产物的基体红外光谱,研究了铀,钍的远红外性质。分析C60填料笼形包含物的红外和拉曼光谱。用反射傅立叶变换红外显微光谱法测定有机富油页岩中海藻化石。