回归直线方程

时间:2024-03-05 19:58:54编辑:奇事君

回归直线方程公式详解

回归直线方程公式详解如下:回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。扩展资料:以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面。对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。

如何求直线回归方程

回归直线方程的计算方法:要确定回归直线方程①,只要确定a与回归系数b。回归直线的求法通常是最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。数学表达:Yi-y^=Yi-a-bXi.总离差不能用n个离差之和来表示,通常是用离差的平方和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。用最小二乘法求回归直线方程中的a,b有图一和图二所示的公式进行参考。其中, 和 如图所示,且 称为样本点的中心。扩展资料:直线方程的表达式:1:一般式:Ax+By+C=0(A、B不同时为0)【适用于所有直线】 , A1/A2=B1/B2≠C1/C2←→两直线平行A1/A2=B1/B2=C1/C2←→两直线重合横截距a=-C/A纵截距b=-C/B2:点斜式:y-y0=k(x-x0) 【适用于不垂直于x轴的直线】表示斜率为k,且过(x0,y0)的直线3:截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线4:斜截式:y=kx+b【适用于不垂直于x轴的直线】表示斜率为k且y轴截距为b的直线。参考资料:百度百科-回归直线方程


线性回归方程的公式是什么?

线性回归方程的公式如下图所示:先求x,y的平均值X,Y再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)后把x,y的平均数X,Y代入a=Y-bX求出a并代入总的公式y=bx+a得到线性回归方程。扩展资料线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。在统计学中,线性回归方程是利用最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。)参考资料百度百科-线性回归方程

线性回归方程的公式是什么?

线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。总离差不能用n个离差之和。来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx2-a)²+······+(yn-bxn-a)²,这样,问题就归结于:当a,b取什么值时Q最小,即到点直线y=bx+a的“整体距离”最小。线性回归方程求法介绍1、用所给样本求出两个相关变量的(算术)平均值。2、分别计算分子和分母:(两个公式任选其一)分子。3、计算b:b=分子/分母。

上一篇:网站下载器

下一篇:网站域名