阳离子交换作用
岩石颗粒的表面往往带负电荷,因此能吸附某些阳离子。当某种成分的地下水与岩石颗粒接触时,水中某些阳离子被岩石颗粒表面吸附,以代替原来被吸附的阳离子,而原来被吸附的阳离子则进入水中,改变了地下水的化学成分,这种作用称为阳离子交换吸附作用。阳离子交换的强度取决于很多因素,其中主要的是岩石的粒度、交换阳离子的性质、介质的pH值和水中电解质的浓度。1.粒度一般岩石的粒度越细,它的交换性能越强。因此,在黏土和黏土岩中,阳离子交换对水化学成分的影响明显。2.离子性质不同阳离子的吸附能不同,在其他条件相同的情况下,吸附能的大小取决于它们的离子价,离子价越高吸附能越强,并易留在岩石上。如果阳离子的电价相同,吸附能随原子量的增加而增大。部分离子吸附能强弱的顺序如下:H+>Fe3+>Al3+>Ba2+>Ca2+>Mg2+>K+>Na+由上可见,Ca2+的吸附能大于Na+,因此在自然界中常可见到地下水中的Ca2+交换吸附岩石颗粒表面的Na+。水文地球化学基础阳离子交换吸附作用在含水层中广泛地进行,并且对改变地下水的化学成分及地下水的性质有重大意义。这种作用使硬度大的地下水变为硬度小的软水,形成低矿化度的钠水,如SO4—Na型、HCO3—Na型以及一些其他过渡型水。3.pH值在阳离子交换反应中,氢离子有着特殊的作用。它的交换能量不仅高于一价的阳离子,还高于二价和三价的阳离子。介质的pH值影响阳离子的吸附数量,水中的氢离子越多,对其他阳离子进入胶状综合体的阻力越强。增加与土壤处于平衡状态的溶液pH值,土壤的交换性能增强。当介质的pH值由6增加到11时,交换容量增加1~2倍。4.电解质浓度离子交换吸附作用并不仅决定于离子的性质,在吸附交换过程中,水中电解质浓度也起着重要作用,浓度大的离子比浓度小的离子易被吸附。因此,如果钠的浓度相当大时,吸附综合体中的部分钙离子将被钠离子排挤出去,水中的Na+与岩石颗粒表面的Ca2+就发生交换吸附的现象,例如海水入侵过程中的Na+与Ca2+的交换吸附。水文地球化学基础天然水中的交换主要是阳离子交换,而不是阴离子交换。这是由于岩石和土壤的胶体成分主要是由SiO2、Al2O3和其他带负电的胶粒所组成,它们吸附带正电的阳离子。除阳离子吸附外,在某些情况下也能发生阴离子吸附作用(例如砖红壤),但是对这种过程研究很少。
离子交换原理
离子交换原理:离子交换是应用离子交换剂(最常见的是离子交换树脂)分离含电解质的液体混合物的过程。离子交换过程是液固两相间的传质(包括外扩散和内扩散)与化学反应(离子交换反应)过程,通常离子交换反应进行得很快,过程速率主要由传质速率决定。离子交换反应一般是可逆的,在一定条件下被交换的离子可以解吸(逆交换),使离子交换剂恢复到原来的状态,即离子交换剂通过交换和再生可反复使用。同时,离子交换反应是定量进行的。EDI的工作原理:EDI将离子交换技术、离子交换膜技术和离子电迁移技术(电渗析技术)相结合的纯水制造技术。该技术利用离子交换能深度脱盐来克服电渗析极化而脱盐不彻底,又利用电渗析极化而发生水电离产生H和OH离子实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷;20世纪80年代以来逐渐兴起的新技术,经过十几年的发展,EDI技术已经在北美及欧洲占据了相当部分的超纯水市场。