OTDR的主要功能有那些?
OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,主要功能如下:它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。在光缆的工程施工和光缆线路维护工作中OTDR是我们使用率最高的测试仪表,在工程初期的单盘测试、工程中期的故障排除及工程末期的竣工测试中它都是必不可少的工具。OTDR主要测试注意事项测试范围相对于被测光纤长度也不要差异太大,否则将会影响到有效分辨率。同时,过大的测试范围还将导致过大而无效的测试数据文件,造成存贮空间的浪费。测试范围是指距离或显示范围。对这一参数的设置意味着告诉(设置)OTDR应该在屏幕上显示多长距离。为了显示整个光纤曲线,设置时这一范围必须大于被测光纤长度。平均(有时也称为扫描)可降低测试结果曲线的噪声水平,提高判读精度。测试时,可以设定扫描次数为快, 中, 慢等三挡或一个特定的时间长度。长的平均时间使能够获得较好的结果曲线。
OTDR是什么?
OTDR指的是光时域反射仪。光时域反射仪是通过对测量曲线的分析,了解光纤的均匀性、缺陷、断裂、接头耦合等若干性能的仪器。它根据光的后向散射与菲涅耳反向原理制作。利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。OTDR的特点:1、 ≤1m超短事件盲区,测试光纤跳线轻松自如。2、 45dB大动态范围,128k数据采样点。3、业界最先进的双色双料一体化模具工艺,坚固耐用。4、 高级防反射LCD,野外环境下显示界面清晰可见。5、 具有多种测试模式、触摸屏及快捷健操作。
光时域反射仪是怎么样检测光纤性能的?
光时域反射仪是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。光时域反射仪测试是通过发射光脉冲到光纤内,然后在 光时域反射仪端口接收返回的信息来进行。当光脉冲在光纤内传输时,会由于光纤本身的性质,连接器,接合点,弯曲或其它类似的事件而产生散射,反射。其中一部分的散射和反射就会返回到 光时域反射仪中。返回的有用信息由 光时域反射仪的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。 光时域反射仪会打入一连串的光突波进入光纤来检验。检验的方式是由打入突波的同一侧接收光讯号,因为打入的讯号遇到不同折射率的介质会散射及反射回来。反射回来的光讯号强度会被量测到,并且是时间的函数,因此可以将之转算成光纤的长度。d=(c×t)/2(IOR)在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)。因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(IOR)。IOR是由光纤生产商来标明。光时域反射仪使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。光时域反射仪就测量回到光时域反射仪端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到光时域反射仪。作为1550nm波长的光时域反射仪,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,光时域反射仪的测试距离就必然受到限制,因为测试设备需要在OTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。光时域反射仪就测量回到光时域反射仪端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,光时域反射仪就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。
光时域反射仪是怎么样检测光纤性能的?麻烦告诉我
光时域反射仪是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。光时域反射仪测试是通过发射光脉冲到光纤内,然后在 光时域反射仪端口接收返回的信息来进行。当光脉冲在光纤内传输时,会由于光纤本身的性质,连接器,接合点,弯曲或其它类似的事件而产生散射,反射。其中一部分的散射和反射就会返回到 光时域反射仪中。返回的有用信息由 光时域反射仪的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。 光时域反射仪会打入一连串的光突波进入光纤来检验。检验的方式是由打入突波的同一侧接收光讯号,因为打入的讯号遇到不同折射率的介质会散射及反射回来。反射回来的光讯号强度会被量测到,并且是时间的函数,因此可以将之转算成光纤的长度。d=(c×t)/2(IOR)在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)。因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(IOR)。IOR是由光纤生产商来标明。光时域反射仪使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。光时域反射仪就测量回到光时域反射仪端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗。给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到光时域反射仪。作为1550nm波长的光时域反射仪,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,光时域反射仪的测试距离就必然受到限制,因为测试设备需要在OTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。光时域反射仪就测量回到光时域反射仪端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,光时域反射仪就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。